143 research outputs found

    Vascular miRā€181b controls tissue factorā€dependent thrombogenicity and inflammation in type 2 diabetes

    Get PDF
    BACKGROUND: Diabetes mellitus is characterized by chronic vascular inflammation leading to pathological expression of the thrombogenic full length (fl) tissue factor (TF) and its isoform alternatively-spliced (as) TF. Blood-borne TF promotes factor (F) Xa generation resulting in a pro-thrombotic state and cardiovascular complications. MicroRNA (miR)s impact gene expression on the post-transcriptional level and contribute to vascular homeostasis. Their distinct role in the control of the diabetes-related procoagulant state remains poorly understood. METHODS: In a cohort of patients with poorly controlled type 2 diabetes (nā€‰=ā€‰46) plasma levels of miR-181b were correlated with TF pathway activity and markers for vascular inflammation. In vitro, human microvascular endothelial cells (HMEC)-1 and human monocytes (THP-1) were transfected with miR-181b or anti-miR-181b and exposed to tumor necrosis factor (TNF) Ī± or lipopolysaccharides (LPS). Expression of TF isoforms, vascular adhesion molecule (VCAM) 1 and nuclear factor (NF) ĪŗB nuclear translocation was assessed. Moreover, aortas, spleen, plasma, and bone marrow-derived macrophage (BMDM)s of mice carrying a deletion of the first miR-181b locus were analyzed with respect to TF expression and activity. RESULTS: In patients with type 2 diabetes, plasma miR-181b negatively correlated with the procoagulant state as evidenced by TF protein, TF activity, D-dimer levels as well as markers for vascular inflammation. In HMEC-1, miR-181b abrogated TNFĪ±-induced expression of flTF, asTF, and VCAM1. These results were validated using the anti-miR-181b. Mechanistically, we confirmed a miR-181b-mediated inhibition of importin-Ī±3 (KPNA4) leading to reduced nuclear translocation of the TF transcription factor NFĪŗB. In THP-1, miR-181b reduced both TF isoforms and FXa generation in response to LPS due to targeting phosphatase and tensin homolog (PTEN), a principal inducer for TF in monocytes. Moreover, in miR-181-/- animals, we found that reduced levels of miR-181b were accompanied by increased TF, VCAM1, and KPNA4 expression in aortic tissue as well as increased TF and PTEN expression in spleen. Finally, BMDMs of miR-181-/- mice showed increased TF expression and FXa generation upon stimulation with LPS. CONCLUSIONS: miR-181b epigenetically controls the procoagulant state in diabetes. Reduced miR-181b levels contribute to increased thrombogenicity and may help to identify individuals at particular risk for thrombosis

    Ticagrelor, but not clopidogrel, reduces arterial thrombosis via endothelial tissue factor suppression

    Get PDF
    The P2Y12 antagonist ticagrelor reduces mortality in patients with acute coronary syndrome (ACS), compared with clopidogrel, and the mechanisms underlying this effect are not clearly understood. Arterial thrombosis is the key event in ACS; however, direct vascular effects of either ticagrelor or clopidogrel with focus on arterial thrombosis and its key trigger tissue factor have not been previously investigated.Methods and results: Human aortic endothelial cells were treated with ticagrelor or clopidogrel active metabolite (CAM) and stimulated with tumour necrosis factor-alpha (TNF-Ī±); effects on procoagulant tissue factor (TF) expression and activity, its counter-player TF pathway inhibitor (TFPI) and the underlying mechanisms were determined. Further, arterial thrombosis by photochemical injury of the common carotid artery, and TF expression in the murine endothelium were examined in C57BL/6 mice treated with ticagrelor or clopidogrel. Ticagrelor, but not CAM, reduced TNF-Ī±-induced TF expression via proteasomal degradation and TF activity, independently of the P2Y12 receptor and the equilibrative nucleoside transporter 1 (ENT1), an additional target of ticagrelor. In C57BL/6 mice, ticagrelor prolonged time to arterial occlusion, compared with clopidogrel, despite comparable antiplatelet effects. In line with our in vitro results, ticagrelor, but not clopidogrel, reduced TF expression in the endothelium of murine arteries.Conclusion: Ticagrelor, unlike clopidogrel, exhibits endothelial-specific antithrombotic properties and blunts arterial thrombus formation. The additional antithrombotic properties displayed by ticagrelor may explain its greater efficacy in reducing thrombotic events in clinical trials. These findings may provide the basis for new indications for ticagrelor

    HIF2Ī±-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells

    Get PDF
    Hypoxia-inducible factors (HIF)-1Ī± and HIF2Ī± are major transcription factors required for adaptive responses to hypoxia. HIFs form a complex with aryl hydrocarbon receptor nuclear translocator (ARNT) to bind to the regulatory regions of target genes. The acetylation of histones by histone acetyltransferases (HATs) is one of the epigenetic marks associated with active chromatin. Indeed, HIFs recruit p300 HAT to hypoxia response elements (HREs) within gene regulatory regions. Here, we report an unusual HIF-mediated transcriptional activation in ovarian clear cell carcinoma (CCC). While characterizing coagulation factor VII (FVII) gene induction during hypoxic conditions, we observed that the interaction of HIF2Ī± with Sp1, but not with ARNT, could induce transcription of FVII in a HRE-independent manner. Unexpectedly, this gene activation is associated with histone deacetylation. We found that a class II HDAC, HDAC4, is recruited with HIF2Ī± to the FVII promoter as a co-activator, while p300 HAT negatively regulated this process. Furthermore, this mechanism can be synergistically enhanced via a deacetylation-dependent pathway when cells are simultaneously exposed to hypoxic and serum-free conditions. These results suggest the presence of a stress-responsive transcription mediated by the HIF2Ī±/Sp1/HDAC4 network and explain how CCC shed their procoagulant activity under hypoxia

    Roles of factor Xa beyond coagulation

    No full text
    Oral anticoagulant therapy has changed by clinical evidence that coagulation factor Xa (FXa) can be safely and effectively targeted for thromboprophylaxis. Because thrombotic and thrombo-inflammatory diseases are frequently caused by excessive activation of the tissue factor (TF) pathway, activation of FX by the TF-FVIIa complex is of central importance for understanding the roles of FXa in thrombosis and hemostasis and functions beyond blood coagulation. Recent data showed that the nascent product FXa associated with TF-FVIIa not only supports hemostatic cofactor VIII activation, but also broadly influences immune reactions in inflammation, cancer, and autoimmunity. These signaling functions of FXa are mediated through protease activated receptor (PAR) cleavage and PAR2 activation occurs in extravascular environments specifically by macrophage synthesized FX. Cell autonomous FXa-PAR2 signaling is a mechanism for tumor-promoting macrophage polarization in the tumor microenvironment and tissue penetrance of oral FXa inhibitors favors the reprogramming of tumor-associated macrophages for non-coagulant therapeutic benefit. It is necessary to decipher the distinct functions of coagulation factors synthesized by the liver for circulation in blood versus those synthesized by extrahepatic immune cells for activity in tissue milieus. This research will lead to a better understanding of the broader roles of FXa as a central regulator of immune and hematopoietic systems
    • ā€¦
    corecore