460 research outputs found

    Representation Theory of Quantized Poincare Algebra. Tensor Operators and Their Application to One-Partical Systems

    Get PDF
    A representation theory of the quantized Poincar\'e (κ\kappa-Poincar\'e) algebra (QPA) is developed. We show that the representations of this algebra are closely connected with the representations of the non-deformed Poincar\'e algebra. A theory of tensor operators for QPA is considered in detail. Necessary and sufficient conditions are found in order for scalars to be invariants. Covariant components of the four-momenta and the Pauli-Lubanski vector are explicitly constructed.These results are used for the construction of some q-relativistic equations. The Wigner-Eckart theorem for QPA is proven.Comment: 18 page

    BRST analysis of topologically massive gauge theory: novel observations

    Full text link
    A dynamical non-Abelian 2-form gauge theory (with B \wedge F term) is endowed with the "scalar" and "vector" gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi-Rouet-Stora-Tyutin (BRST) analysis of the four (3 + 1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the "scalar" and "vector" gauge symmetries of the theory.Comment: LaTeX file, 14 pages, an appendix added, references expanded, version to appear in EPJ

    Variation in blood serum proteins and association with somatic cell count in dairy cattle from multi-breed herds

    Get PDF
    Blood serum proteins are significant indicators of animal health. Nevertheless, several factors should be considered to appropriately interpret their concentrations in blood. Therefore, the objectives of this study were (1) to assess the effect of herd productivity, breed, age and stage of lactation on serum proteins and (2) to investigate association between serum proteins and somatic cell count (SCC) in dairy cattle. Milk and blood samples were collected from 1508 cows of six different breeds (Holstein Friesian, Brown Swiss, Jersey, Simmental, Rendena and Alpine Grey) that were housed in 41 multi-breed herds. Milk samples were analyzed for composition and SCC, while blood samples were analyzed for serum proteins (i.e.Total protein, albumin, globulin and albumin-To-globulin ratio (A : G)). Herds were classified as low or high production, according to the cow's average daily milk energy yield adjusted for breed, days in milk (DIM) and parity. Data were analyzed using a linear mixed model that included the fixed effects of DIM, parity, SCS, breed, herd productivity and the random effect of the Herd-Test date within productivity level. Cows in high producing herds (characterized also by greater use of concentrates in the diet) had greater serum albumin concentrations. Breed differences were reported for all traits, highlighting a possible genetic mechanism. The specialized breed Jersey and the two dual-purpose local breeds (Alpine Grey and Rendena) had the lowest globulin concentration and greatest A : G. Changes in serum proteins were observed through lactation. Total protein reached the highest concentration during the 4th month of lactation. Blood albumin increased with DIM following a quadratic pattern, while globulin decreased linearly. As a consequence, A : G increased linearly during lactation. Older cows had greater total protein and globulin concentrations, while albumin concentration seemed to be not particularly affected by age. A linear relationship between serum proteins and SCS was observed. High milk SCS was associated with greater total protein and globulin concentrations in blood. The rise in globulin concentration, together with a decrease in albumin concentrations, resulted in a decline in A : G as SCS of milk increased. In conclusion, such non-genetic factors must be considered to appropriately interpret serum proteins as potential animal welfare indicator and their evaluation represents an important first-step for future analysis based on the integration of metabolomics, genetic and genomic information for improving the robustness of dairy cows

    Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows

    Get PDF
    The aim of this study was to investigate associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits. Forty-one multibreed herds were selected for the study, and composite milk samples were collected from 1,508 cows belonging to 3 specialized dairy breeds (Holstein Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds of Alpine origin (Simmental, Rendena, and Grey Alpine). Milk composition [i.e., fat, protein, casein, lactose, pH, urea, and somatic cell count (SCC)] was analyzed, and separation of protein fractions was performed by reversed-phase high performance liquid chromatography. Eleven coagulation traits were measured: 5 traditional milk coagulation properties [time from rennet addition to milk gelation (RCT, min), curd-firming rate as the time to a curd firmness (CF) of 20 mm (k20, min), and CF at 30, 45, and 60 min from rennet addition (a30, a45, and a60, mm)], and 6 new curd firming and syneresis traits [potential asymptotical CF at an infinite time (CFP, mm), curd-firming instant rate constant (kCF, % 7 min-1), curd syneresis instant rate constant (kSR, % 7 min-1), modeled RCT (RCTeq, min), maximum CF value (CFmax, mm), and time at CFmax (tmax, min)]. We also measured 3 cheese yield traits, expressing the weights of total fresh curd (%CYCURD), dry matter (%CYSOLIDS), and water (%CYWATER) in the curd as percentages of the weight of the processed milk, and 4 nutrient recovery traits (RECPROTEIN, RECFAT, RECSOLIDS, and RECENERGY), representing the percentage ratio between each nutrient in the curd and milk. Milk samples with SCC > 100,000 cells/mL were subjected to bacteriological examination. All samples were divided into 7 clusters of udder health (UH) status: healthy (cows with milk SCC < 100,000 cells/mL and uncultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples divided into contagious, environmental, and opportunistic intramammary infection (IMI). Data were analyzed using a linear mixed model. Significant variations in the casein to protein ratio and lactose content were observed in all culture-positive samples and in culture-negative samples with medium to high SCC compared to normal milk. No differences were observed among contagious, environmental, and opportunistic pathogens, suggesting an effect of inflammation rather than infection. The greatest impairment in milk quantity and composition, clotting ability, and cheese production was observed in the 2 UH status groups with the highest milk SCC (i.e., contagious IMI and culture-negative samples with high SCC), revealing a discrepancy between the bacteriological results and inflammatory status, and thus confirming the importance of SCC as an indicator of udder health and milk quality

    Twisted Classical Poincar\'{e} Algebras

    Full text link
    We consider the twisting of Hopf structure for classical enveloping algebra U(g^)U(\hat{g}), where g^\hat{g} is the inhomogenous rotations algebra, with explicite formulae given for D=4D=4 Poincar\'{e} algebra (g^=P4).(\hat{g}={\cal P}_4). The comultiplications of twisted UF(P4)U^F({\cal P}_4) are obtained by conjugating primitive classical coproducts by FU(c^)U(c^),F\in U(\hat{c})\otimes U(\hat{c}), where c^\hat{c} denotes any Abelian subalgebra of P4{\cal P}_4, and the universal RR-matrices for UF(P4)U^F({\cal P}_4) are triangular. As an example we show that the quantum deformation of Poincar\'{e} algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincar\'{e} algebra. The interpretation of twisted Poincar\'{e} algebra as describing relativistic symmetries with clustered 2-particle states is proposed.Comment: \Large \bf 19 pages, Bonn University preprint, November 199

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Quasi-2D Heisenberg Antiferromagnets [CuX(pyz)2](BF4) with X = Cl and Br

    Get PDF
    Two Cu2+ coordination polymers [CuCl(pyz)(2)](BF4) 1 and [CuBr(pyz)(2)]-(BF4) 2 (pyz = pyrazine) were synthesized in the family of quasi two-dimensional (2D) [Cu(pyz)(2)](2+) magnetic networks. The layer connectivity by monatomic halide ligands results in significantly shorter interlayer distances. Structures were determined by single crystal X-ray diffraction. Temperature-dependent X-ray diffraction of 1 revealed rigid [Cu(pyz)(2)](2+) layers that do not expand between 5 K and room temperature, whereas the expansion along the c-axis amounts to 2%. The magnetic susceptibility of 1 and 2 shows a broad maximum at similar to 8 K, indicating antiferromagnetic interactions within the [Cu(pyz)(2)](2+) layers. 2D Heisenberg model fits result in J(parallel to) = 9.4(1) K for 1 and 8.9(1) K for 2. The interlayer coupling is much weaker with vertical bar J(perpendicular to)vertical bar = 0.31(6) K for 1 and 0.52(9) K for 2. The electron density, experimentally determined and calculated by density functional theory, confirms the location of the singly occupied orbital (the magnetic orbital) in the tetragonal plane. The analysis of the spin density reveals a mainly sigma-type exchange through pyrazine. Kinks in the magnetic susceptibility indicate the onset of long-range three-dimensional magnetic order below 4 K. The magnetic structures were determined by neutron diffraction. Magnetic Bragg peaks occur below T-N = 3.9(1) K for 1 and 3.8(1) K for 2. The magnetic unit cell is doubled along the c-axis (k = 0, 0, 0.5). The ordered magnetic moments are located in the tetragonal plane and amount to 0.76(8) mu(B)/Cu2+ for 1 and 0.6(1) mu(B)/Cu2+ for 2 at 1.5 K. The moments are coupled antiferromagnetically both in the ab plane and along the c-axis. The Cu2+ g-tensor was determined from electron spin resonance spectra as g(x) = 2.060(1), g(z) = 2.275(1) for 1 and g(x) = 2.057(1), g(z) = 2.272(1) for 2 at room temperature

    Review: Perspective on high-performing dairy cows and herds

    Get PDF
    Milk and dairy products provide highly sustainable concentrations of essential amino acids and other required nutrients for humans; however, amount of milk currently produced per dairy cow globally is inadequate to meet future needs. Higher performing dairy cows and herds produce more milk with less environmental impact per kg than lower performing cows and herds. In 2018, 15.4% of the world\u27s dairy cows produced 45.4% of the world\u27s dairy cow milk, reflecting the global contribution of high-performing cows and herds. In high-performing herds, genomic evaluations are utilized for multiple trait selection, welfare is monitored by remote sensing, rations are formulated at micronutrient levels, health care is focused on prevention and reproduction is managed with precision. Higher performing herds require more inputs and generate more waste products per cow, thus innovations in environmental management on such farms are essential for lowering environmental impacts. Our focus is to provide perspectives on technologies and practices that contribute most to sustainable production of milk from high-performing dairy cows and herds

    Pressure dependence of phonon modes across the tetragonal to collapsed tetragonal phase transition in CaFe2As2

    Get PDF
    The pressure dependence of a large number of phonon modes in CaFe2As2 with energies covering the full range of the phonon spectrum has been studied using inelastic x-ray and neutron scattering. The observed phonon frequency changes are in general rather small despite the sizable changes of the lattice parameters at the phase transition. This indicates that the bonding properties are not profoundly altered by the phase transition. The transverse acoustic phonons propagating along the c-direction are an exception because they stiffen very significantly in response to the large contraction of the c-axis. The lattice parameters are found to change significantly as a function of pressure before, during and after the first-order phase transition. However, the frequencies change nearly uniformly with the change in the lattice parameters due to pressure, with no regard specifically to the first-order phase transition. Density functional theory describes the frequencies in both the zero pressure and in the collapsed phase in a satisfactory way if based on the respective crystal structures
    corecore