147 research outputs found

    A multi-trait meta-analysis with imputed sequence variants reveals twelve QTL for mammary gland morphology in Fleckvieh cattle

    Get PDF
    Background The availability of whole-genome sequence data from key ancestors in bovine populations provides an exhaustive catalogue of polymorphic sites that segregate within and across cattle breeds. Sequence variants identified from the sequenced genome of key ancestors can be imputed into animals that have been genotyped using medium- and high-density genotyping arrays. Association analysis with imputed sequences, particularly when applied to multiple traits simultaneously, is a very powerful approach to detect candidate causal variants that underlie complex phenotypes. Results We used whole-genome sequence data from 157 key ancestors of the German Fleckvieh cattle population to impute 20,561,798 sequence variants into 10,363 animals that had (partly imputed) genotypes based on 634,109 single nucleotide polymorphisms (SNPs). Rare variants were more frequent among the sequence-derived than the array-derived genotypes. Association studies with imputed sequence variants were performed using seven correlated udder conformation traits as response variables. The calculation of an approximate multi-trait test statistic enabled us to detect 12 quantitative trait loci (QTL) (P < 2.97 × 10−9) that affect different morphological features of the mammary gland. Among the tested variants, the most significant associations were found for imputed sequence variants at 11 QTL, whereas the top association signal was observed for an array-derived variant at a QTL on bovine chromosome 14. Seven QTL were associated with multiple phenotypes. Most QTL were located in non-coding regions of the genome but in close proximity of candidate genes that could be involved in mammary gland morphology (SP5, GC, NPFFR2, CRIM1, RXFP2, TBX5, RBM19 and ADAM12). Conclusions Using imputed sequence variants in association analyses allows the detection of QTL at maximum resolution. Multi-trait approaches can reveal QTL that are not detected in single-trait association studies. Most QTL for udder conformation traits were located in non-coding regions of the genome, which suggests that mutations in regulatory sequences are the major determinants of variation in mammary gland morphology in cattle.ISSN:0999-193XISSN:1297-968

    Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptor delta belongs to the nuclear receptor superfamily of ligand-inducible transcription factors. It is a key regulator of lipid metabolism. The peroxisome proliferator-activated receptor delta gene (<it>PPARD</it>) has been assigned to a region on porcine chromosome 7, which harbours a quantitative trait locus for backfat. Thus, <it>PPARD </it>is considered a functional and positional candidate gene for backfat thickness. The purpose of this study was to test this candidate gene hypothesis in a cross of breeds that were highly divergent in lipid deposition characteristics.</p> <p>Results</p> <p>Screening for genetic variation in porcine <it>PPARD </it>revealed only silent mutations. Nevertheless, significant associations between <it>PPARD </it>haplotypes and backfat thickness were observed in the F2 generation of the Mangalitsa × Piétrain cross as well as a commercial German Landrace population. Haplotype 5 is associated with increased backfat in F2 Mangalitsa × Piétrain pigs, whereas haplotype 4 is associated with lower backfat thickness in the German Landrace population. Haplotype 4 and 5 carry the same alleles at all but one SNP. Interestingly, the opposite effects of <it>PPARD </it>haplotypes 4 and 5 on backfat thickness are reflected by opposite effects of these two haplotypes on PPAR-δ mRNA levels. Haplotype 4 significantly increases PPAR-δ mRNA levels, whereas haplotype 5 decreases mRNA levels of PPAR-δ.</p> <p>Conclusion</p> <p>This study provides evidence for an association between <it>PPARD </it>and backfat thickness. The association is substantiated by mRNA quantification. Further studies are required to clarify, whether the observed associations are caused by <it>PPARD </it>or are the result of linkage disequilibrium with a causal variant in a neighbouring gene.</p

    Combining evidence of selection with association analysis increases power to detect regions influencing complex traits in dairy cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hitchhiking mapping and association studies are two popular approaches to map genotypes to phenotypes. In this study we combine both approaches to complement their specific strengths and weaknesses, resulting in a method with higher statistical power and fewer false positive signals. We applied our approach to dairy cattle as they underwent extremely successful selection for milk production traits and since an excellent phenotypic record is available. We performed whole genome association tests with a new mixed model approach to account for stratification, which we validated via Monte Carlo simulations. Selection signatures were inferred with the integrated haplotype score and a locus specific permutation based integrated haplotype score that works with a folded frequency spectrum and provides a formal test of signifance to identify selection signatures.</p> <p>Results</p> <p>About 1,600 out of 34,851 SNPs showed signatures of selection and the locus specific permutation based integrated haplotype score showed overall good accordance with the whole genome association study. Each approach provides distinct information about the genomic regions that influence complex traits. Combining whole genome association with hitchhiking mapping yielded two significant loci for the trait protein yield. These regions agree well with previous results from other selection signature scans and whole genome association studies in cattle.</p> <p>Conclusion</p> <p>We show that the combination of whole genome association and selection signature mapping based on the same SNPs increases the power to detect loci influencing complex traits. The locus specific permutation based integrated haplotype score provides a formal test of significance in selection signature mapping. Importantly it does not rely on knowledge of ancestral and derived allele states.</p

    Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery

    Get PDF
    The next generation sequencing of a single cow genome with low-to-medium coverage has revealed 2.44 million new SNPs

    The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence

    Get PDF
    The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza × Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele at, which is recessive to the wild-type allele A. Toward positional cloning of the at mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5′ untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The at mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression patter

    Genetics of adaptation in modern chicken

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.We carried out whole genome resequencing of 127 chicken including red jungle fowl and multiple populations of commercial broilers and layers to perform a systematic screening of adaptive changes in modern chicken (Gallus gallus domesticus). We uncovered >21 million high quality SNPs of which 34% are newly detected variants. This panel comprises >115,000 predicted amino-acid altering substitutions as well as 1,100 SNPs predicted to be stop-gain or -loss, several of which reach high frequencies. Signatures of selection were investigated both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during domestication and breed development. Contrasting wild and domestic chicken we confirmed selection at the BCO2 and TSHR loci and identified 34 putative sweeps co-localized with ALX1, KITLG, EPGR, IGF1, DLK1, JPT2, CRAMP1, and GLI3, among others. Analysis of enrichment between groups of wild vs. commercials and broilers vs. layers revealed a further panel of candidate genes including CORIN, SKIV2L2 implicated in pigmentation and LEPR, MEGF10 and SPEF2, suggestive of production-oriented selection. SNPs with marked allele frequency differences between wild and domestic chicken showed a highly significant deficiency in the proportion of amino-acid altering mutations (P<2.5×10−6). The results contribute to the understanding of major genetic changes that took place during the evolution of modern chickens and in poultry breeding

    Radio Di Kawasan Perbatasan Indonesia Dalam Centering the Margin

    Get PDF
    Kawasan perbatasan Indonesia banyak mengalami blank spot layanan informasi sehingga siaran yang menghubungkan warganegara dan pemerintah tidak tersampaikan dengan baik. Padahal, keberadaan media di perbatasan sangat strategis sebagai penyedia informasi yang merefl eksikan dinamika lokal, mengartikulasikan kepentingan daerah sehingga dapat didengar oleh pusat. Harapannya, artikulasi tersebut dapat memberi warna pada dinamika sosial, politik, ekonomi, dan budaya di tanah air. Tulisan ini mengeksplorasi bagaimana radio di wilayah perbatasan memberikan kontribusi dalam peran centering the margin, yakni membawa aspirasi di perbatasan guna “memusatkan yang pinggir”

    A Nonsense Mutation in TMEM95 Encoding a Nondescript Transmembrane Protein Causes Idiopathic Male Subfertility in Cattle

    Get PDF
    Genetic variants underlying reduced male reproductive performance have been identified in humans and model organisms, most of them compromising semen quality. Occasionally, male fertility is severely compromised although semen analysis remains without any apparent pathological findings (i.e.,idiopathic subfertility). Artificial insemination (AI) in most cattle populations requires close examination of all ejaculates before insemination. Although anomalous ejaculates are rejected, insemination success varies considerably among AI bulls. In an attempt to identify genetic causes of such variation, we undertook a genome-wide association study (GWAS). Imputed genotypes of 652, 856 SNPs were available for 7962 AI bulls of the Fleckvieh (FV) population. Male reproductive ability (MRA) was assessed based on 15.3 million artificial inseminations. The GWAS uncovered a strong association signal on bovine chromosome 19 (P = 4.08x10(-59)). Subsequent autozygosity mapping revealed a common 1386 kb segment of extended homozygosity in 40 bulls with exceptionally poor reproductive performance. Only 1.7% of 35, 671 inseminations with semen samples of those bulls were successful. None of the bulls with normal reproductive performance was homozygous, indicating recessive inheritance. Exploiting whole-genome resequencing data of 43 animals revealed a candidate causal nonsense mutation (rs378652941, c. 483C>A, p.Cys161X) in the transmembrane protein 95 encoding gene TMEM95 which was subsequently validated in 1990 AI bulls. Immunohistochemical investigations evidenced that TMEM95 is located at the surface of spermatozoa of fertile animals whereas it is absent in spermatozoa of subfertile animals. These findings imply that integrity of TMEM95 is required for an undisturbed fertilisation. Our results demonstrate that deficiency of TMEM95 severely compromises male reproductive performance in cattle and reveal for the first time a phenotypic effect associated with genomic variation in TMEM95

    Detection of two non-synonymous SNPs in SLC45A2 on BTA20 as candidate causal mutations for oculocutaneous albinism in Braunvieh cattle

    Get PDF
    Background: Cases of albinism have been reported in several species including cattle. So far, research has identified many genes that are involved in this eye-catching phenotype. Thus, when two paternal Braunvieh half-sibs with oculocutaneous albinism were detected on a private farm, we were interested in knowing whether their phenotype was caused by an already known gene/mutation. Results: Analysis of genotyping data (50K) of the two albino individuals, their mothers and five other relatives identified a 47.61-Mb candidate haplotype on Bos taurus chromosome BTA20. Subsequent comparisons of the sequence of this haplotype with sequence data from four Braunvieh sires and the Aurochs genome identified two possible candidate causal mutations at positions 39,829,806 bp (G/A;R45Q) and 39,864,148 bp (C/T;T444I) that were absent in 1682 animals from various bovine breeds included in the 1000 bull genomes project. Both polymorphisms represent coding variants in the SLC45A2 gene, for which the human equivalent harbors numerous variants associated with oculocutaneous albinism type 4. We demonstrate an association of R45Q and T444I with the albino phenotype by targeted genotyping. Conclusions: Although the candidate gene SLC45A2 is known to be involved in albinism in different species, to date in cattle only mutations in the TYR and MITF genes were reported to be associated with albinism or albinism-like phenotypes. Thus, our study extends the list of genes that are associated with bovine albinism. However, further research and more samples from related animals are needed to elucidate if only one of these two single nucleotide polymorphisms or the combination of both is the actual causal variant
    • …
    corecore