216 research outputs found

    Ion masking improves resolution in quadrupole mass spectrometers

    Get PDF
    Mass spectrometers analyze molecular composition by determining mass-to-charge ratio of ion fragments of molecules. Study adds significantly to quantitative understanding of quadrupole mass filter. It includes development of quantitative theory of ion oscillations, computer analysis of ion behavior, and identification of determining factors in peak tail size

    Quadrupole ion entrance mask study

    Get PDF
    Theoretical and computer analyses of unstable ions in quadrupole mass spectrometer with ion source maskin

    Geochemistry and mineralogy of Western Australian salt lake sediments: Implications for Meridiani Planum on Mars

    Get PDF
    Hypersaline lakes are characteristic for Western Australia and display a rare combination of geochemical and mineralogical properties which make these lakes potential analogues for past conditions on Mars. In our study we focused on the geochemistry and mineralogy of Lake Orr and Lake Whurr. While both lakes are poor in organic carbon (<1%) the sediments’ pH values differ and range from 3.8 to 4.8 in Lake Orr and from 5.4 to 6.3 in Lake Whurr sediments. Lake Whurr sediments were dominated by orange and red sediment zones in which the main Fe minerals were identified as hematite, goethite, and tentatively jarosite and pyrite. Lake Orr was dominated by brownish and blackish sediments where the main Fe minerals were goethite and another paramagnetic Fe(III)-phase that could not be identified. Furthermore, a likely secondary Fe(II)-phase was observed in Lake Orr sediments. The mineralogy of these two salt lakes in the sampling area is strongly influenced by events such as flooding, evaporation and desiccation, processes that explain at least to some extent the observed differences between Lake Orr and Lake Whurr. The iron mineralogy of Lake Whurr sediments and the high salinity make this lake a suitable analogue for Meridiani Planum on Mars and in particular the tentative identification of pyrite in Lake Whurr sediments has implications for the interpretation of the Fe mineralogy of Meridiani Planum sediments

    High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems

    Get PDF
    This perspective article provides an assessment of the state-of-the-art in the molecular-resolution analysis of complex organic materials. These materials can be divided into biomolecules in complex mixtures (which are amenable to successful separation into unambiguously defined molecular fractions) and complex nonrepetitive materials (which cannot be purified in the conventional sense because they are even more intricate). Molecular-level analyses of these complex systems critically depend on the integrated use of high-performance separation, high-resolution organic structural spectroscopy and mathematical data treatment. At present, only high-precision frequency-derived data exhibit sufficient resolution to overcome the otherwise common and detrimental effects of intrinsic averaging, which deteriorate spectral resolution to the degree of bulk-level rather than molecular-resolution analysis. High-precision frequency measurements are integral to the two most influential organic structural spectroscopic methods for the investigation of complex materialsā€”NMR spectroscopy (which provides unsurpassed detail on close-range molecular order) and FTICR mass spectrometry (which provides unrivalled resolution)ā€”and they can be translated into isotope-specific molecular-resolution data of unprecedented significance and richness. The quality of this standalone de novo molecular-level resolution data is of unparalleled mechanistic relevance and is sufficient to fundamentally advance our understanding of the structures and functions of complex biomolecular mixtures and nonrepetitive complex materials, such as natural organic matter (NOM), aerosols, and soil, plant and microbial extracts, all of which are currently poorly amenable to meaningful target analysis. The discrete analytical volumetric pixel space that is presently available to describe complex systems (defined by NMR, FT mass spectrometry and separation technologies) is in the range of 108ā€“14 voxels, and is therefore capable of providing the necessary detail for a meaningful molecular-level analysis of very complex mixtures. Nonrepetitive complex materials exhibit mass spectral signatures in which the signal intensity often follows the number of chemically feasible isomers. This suggests that even the most strongly resolved FTICR mass spectra of complex materials represent simplified (e.g. isomer-filtered) projections of structural space

    Angiogenesis in tissue engineering : Breathing life into constructed tissue substitutes

    Get PDF
    Long-term function of three-dimensional (3D) tissue constructs depends on adequate vascularization after implantation. Accordingly, research in tissue engineering has focused on the analysis of angiogenesis. For this purpose, 2 sophisticated in vivo models (the chorioallantoic membrane and the dorsal skinfold chamber) have recently been introduced in tissue engineering research, allowing a more detailed analysis of angiogenic dysfunction and engraftment failure. To achieve vascularization of tissue constructs, several approaches are currently under investigation. These include the modification of biomaterial properties of scaffolds and the stimulation of blood vessel development and maturation by different growth factors using slow-release devices through pre-encapsulated microspheres. Moreover, new microvascular networks in tissue substitutes can be engineered by using endothelial cells and stem cells or by creating arteriovenous shunt loops. Nonetheless, the currently used techniques are not sufficient to induce the rapid vascularization necessary for an adequate cellular oxygen supply. Thus, future directions of research should focus on the creation of microvascular networks within 3D tissue constructs in vitro before implantation or by co-stimulation of angiogenesis and parenchymal cell proliferation to engineer the vascularized tissue substitute in situ

    Realā€time imaging reveals distinct pore scale dynamics during transient and equilibrium subsurface multiphase flow

    Get PDF
    Many subsurface fluid flows, including the storage of CO2 underground or the production of oil, are transient processes incorporating multiple fluid phases. The fluids are not in equilibrium meaning macroscopic properties such as fluid saturation and pressure vary in space and time. However, these flows are traditionally modeled with equilibrium (or steady-state) flow properties, under the assumption that the pore-scale fluid dynamics are equivalent. In this work, we used fast synchrotron X-ray tomography with 1 s time resolution to image the pore-scale fluid dynamics as the macroscopic flow transitioned to steady state. For nitrogen or decane, and brine injected simultaneously into a porous rock, we observed distinct pore-scale fluid dynamics during transient flow. Transient flow was found to be characterized by intermittent fluid occupancy, whereby flow pathways through the pore space were constantly rearranging. The intermittent fluid occupancy was largest and most frequent when a fluid initially invaded the rock. But as the fluids established an equilibrium the dynamics decreased to either static interfaces between the fluids or small-scale intermittent flow pathways, depending on the capillary number and viscosity ratio. If the fluids were perturbed after an equilibrium was established, by changing the flow rate, the transition to a new equilibrium was quicker than the initial transition. Our observations suggest that transient flows require separate modeling parameters. The time scales required to achieve equilibrium suggest that several meters of an invading plume front will have flow properties controlled by transient pore-scale fluid dynamics

    Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    Get PDF
    The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D) allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP) allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine) in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor) to oncologists, radiotherapists and pathologists

    Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow

    Get PDF
    With recent advances at Xā€ray microcomputed tomography (Ī¼CT) synchrotron beam lines, it is now possible to study poreā€scale flow in porous rock under dynamic flow conditions. The collection of fourā€dimensional data allows for the direct 3ā€D visualization of fluidā€fluid displacement in porous rock as a function of time. However, even stateā€ofā€theā€art fastā€Ī¼CT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3ā€D volume. We present an approach to analyze the 2ā€D radiograph data collected during fastā€Ī¼CT to study the poreā€scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which poreā€scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluidā€movementā€induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluidā€fluid displacement at the millisecond time scale. We observe that after a displacement event, the poreā€scale fluid distribution relaxes to (quasiā€) equilibrium in cascades of poreā€scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different Ī¼CT applications where morphological changes occur at a time scale less than that required for collecting a Ī¼CT scan
    • ā€¦
    corecore