172 research outputs found

    Solid-State Microwave Electronics

    Get PDF
    Contains reports on three research projects.National Aeronautics and Space Administration (Grant NGL 22-009-163)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E

    Solid-State Microwave Electronics

    Get PDF
    Contains reports on status of research and nine research projects.National Aeronautics and Space Administration (Grant NGR-22-009-163

    Solid-State Microwave Electronics

    Get PDF
    Contains research objectives and reports on status of research projects.National Aeronautics and Space Administration (Grant NGR-22-009-163

    Highlights of the mini-symposium on extracellular vesicles in inter-organismal communication, held in Munich, Germany, August 2018

    Get PDF
    All living organisms secrete molecules for intercellular communication. Recent research has revealed that extracellular vesicles (EVs) play an important role in inter-organismal cell-to-cell communication by transporting diverse messenger molecules, including RNA, DNA, lipids and proteins. These discoveries have raised fundamental questions regarding EV biology. How are EVs biosynthesized and loaded with messenger/cargo molecules? How are EVs secreted into the extracellular matrix? What are the EV uptake mechanisms of recipient cells? As EVs are produced by all kind of organisms, from unicellular bacteria and protists, filamentous fungi and oomycetes, to complex multicellular life forms such as plants and animals, basic research in diverse model systems is urgently needed to shed light on the multifaceted biology of EVs and their role in inter-organismal communications. To help catalyse progress in this emerging field, a mini-symposium was held in Munich, Germany in August 2018. This report highlights recent progress and major questions being pursued across a very diverse group of model systems, all united by the question of how EVs contribute to inter-organismal communication

    Sialylated N-glycans mediate monocyte uptake of extracellular vesicles secreted from Plasmodium falciparum-infected red blood cells

    Get PDF
    Glycoconjugates on extracellular vesicles (EVs) play a vital role in internalization and mediate interaction as well as regulation of the host immune system by viruses, bacteria, and parasites. During their intraerythrocytic life-cycle stages, malaria parasites, Plasmodium falciparum (Pf) mediate the secretion of EVs by infected red blood cells (RBCs) that carry a diverse range of parasitic and host-derived molecules. These molecules facilitate parasite-parasite and parasite-host interactions to ensure parasite survival. To date, the number of identified Pf genes associated with glycan synthesis and the repertoire of expressed glycoconjugates is relatively low. Moreover, the role of Pf glycans in pathogenesis is mostly unclear and poorly understood. As a result, the expression of glycoconjugates on Pf-derived EVs or their involvement in the parasite life-cycle has yet to be reported. Herein, we show that EVs secreted by Pf-infected RBCs carry significantly higher sialylated complex N-glycans than EVs derived from healthy RBCs. Furthermore, we reveal that EV uptake by host monocytes depends on N-glycoproteins and demonstrate that terminal sialic acid on the N-glycans is essential for uptake by human monocytes. Our results provide the first evidence that Pf exploits host sialylated N-glycans to mediate EV uptake by the human immune system cells

    Solid-State Microwave Electronics

    Get PDF
    Contains reports on two research projects.National Aeronautics and Space Administration (Grant NGR-22-009-163

    MuPix and ATLASPix -- Architectures and Results

    Full text link
    High Voltage Monolithic Active Pixel Sensors (HV-MAPS) are based on a commercial High Voltage CMOS process and collect charge by drift inside a reversely biased diode. HV-MAPS represent a promising technology for future pixel tracking detectors. Two recent developments are presented. The MuPix has a continuous readout and is being developed for the Mu3e experiment whereas the ATLASPix is being developed for LHC applications with a triggered readout. Both variants have a fully monolithic design including state machines, clock circuitries and serial drivers. Several prototypes and design variants were characterised in the lab and in testbeam campaigns to measure efficiencies, noise, time resolution and radiation tolerance. Results from recent MuPix and ATLASPix prototypes are presented and prospects for future improvements are discussed.Comment: 10 pages, proceedings, The 28th International Workshop on Vertex Detectors (VERTEX 2019), 13 - 18 Oct 2019, Lopud Island, Croati

    Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria

    Get PDF
    Malaria remains one of the greatest public health challenges worldwide, particularly in sub-Saharan Africa. The clinical outcome of individuals infected with Plasmodium falciparum parasites depends on many factors including host systemic inflammatory responses, parasite sequestration in tissues and vascular dysfunction. Production of pro-inflammatory cytokines and chemokines promotes endothelial activation as well as recruitment and infiltration of inflammatory cells, which in turn triggers further endothelial cell activation and parasite sequestration. Inflammatory responses are triggered in part by bioactive parasite products such as hemozoin and infected red blood cell-derived extracellular vesicles (iRBC-derived EVs). Here we demonstrate that such EVs contain functional miRNA-Argonaute 2 complexes that are derived from the host RBC. Moreover, we show that EVs are efficiently internalized by endothelial cells, where the miRNA-Argonaute 2 complexes modulate target gene expression and barrier properties. Altogether, these findings provide a mechanistic link between EVs and vascular dysfunction during malaria infection
    corecore