12 research outputs found

    DNA methylation differences after exposure to prenatal famine are common and timing

    Get PDF
    Prenatal famine in humans has been associated with various later-life consequences, depending on the gestational timing of the insult and the sex of the exposed individual. Epigenetic mechanisms have been proposed to underlie these associations. Indeed, animal studies and our early human data on the imprinted IGF2 locus indicated a link between prenatal nutritional and DNA methylation. However, it remains unclear how common changes in DNA methylation are and whether they are sex-and timing-specific paralleling the later-life consequences of prenatal famine exposure. To this end, we investigated the methylation of 15 loci implicated in growth and metabolic disease in individuals who were prenatally exposed to a war-time famine in 1944-45. Methylation of INSIGF was lower among individuals who were periconceptionally exposed to the famine (n 5 60) compared with their unexposed same-sex siblings (P 5 2 3 10 25 ), whereas methylation of IL10, LEP, ABCA1, GNASAS and MEG3 was higher (all P < 10 23 ). A significant interaction with sex was observed for INSIGF, LEP and GNASAS. Next, methylation of eight representative loci was compared between 62 individuals exposed late in gestation and their unexposed siblings. Methylation was different for GNASAS (P 5 1.1 3 10 27 ) and, in men, LEP (P 5 0.017). Our data indicate that persistent changes in DNA methylation may be a common consequence of prenatal famine exposure and that these changes depend on the sex of the exposed individual and the gestational timing of the exposure

    KELT-20b: A Giant Planet with a Period of P

    Full text link

    A genome-wide association study identifies a region at chromosome 12 as a potential susceptibility locus for restenosis after percutaneous coronary intervention

    No full text
    Percutaneous coronary intervention (PCI) has become an effective therapy to treat obstructive coronary artery diseases (CAD). However, one of the major drawbacks of PCI is the occurrence of restenosis in 5-25% of all initially treated patients. Restenosis is defined as the re-narrowing of the lumen of the blood vessel, resulting in renewed symptoms and the need for repeated intervention. To identify genetic variants that are associated with restenosis, a genome-wide association study (GWAS) was conducted in 295 patients who developed restenosis (cases) and 571 who did not (controls) from the GENetic Determinants of Restenosis (GENDER) study. Analysis of similar to 550 000 single nucleotide polymorphisms (SNPs) in GENDER was followed by a replication phase in three independent case-control populations (533 cases and 3067 controls). A potential susceptibility locus for restenosis at chromosome 12, including rs10861032 (P(combined) = 1.11 x 10(-7)) and rs9804922 (P(combined) = 1.45 x 10(-6)), was identified in the GWAS and replication phase. In addition, both SNPs were also associated with coronary events (rs10861032, P(additive) = 0.005; rs9804922, P(additive) = 0.023) in a trial based cohort set of elderly patients with (enhanced risk of) CAD (PROSPER) and all-cause mortality in PROSPER (rs10861032, P(additive) = 0.007; rs9804922, P(additive) = 0.013) and GENDER (rs10861032, P(additive) = 0.005; rs9804922, P(additive) = 0.023). Further analysis suggests that this locus could be involved in regulatory functions

    DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific

    No full text
    Prenatal famine in humans has been associated with various later-life consequences, depending on the gestational timing of the insult and the sex of the exposed individual. Epigenetic mechanisms have been proposed to underlie these associations. Indeed, animal studies and our early human data on the imprinted IGF2 locus indicated a link between prenatal nutritional and DNA methylation. However, it remains unclear how common changes in DNA methylation are and whether they are sex- and timing-specific paralleling the later-life consequences of prenatal famine exposure. To this end, we investigated the methylation of 15 loci implicated in growth and metabolic disease in individuals who were prenatally exposed to a war-time famine in 1944–45. Methylation of INSIGF was lower among individuals who were periconceptionally exposed to the famine (n = 60) compared with their unexposed same-sex siblings (P = 2 × 10−5), whereas methylation of IL10, LEP, ABCA1, GNASAS and MEG3 was higher (all P < 10−3). A significant interaction with sex was observed for INSIGF, LEP and GNASAS. Next, methylation of eight representative loci was compared between 62 individuals exposed late in gestation and their unexposed siblings. Methylation was different for GNASAS (P = 1.1 × 10−7) and, in men, LEP (P = 0.017). Our data indicate that persistent changes in DNA methylation may be a common consequence of prenatal famine exposure and that these changes depend on the sex of the exposed individual and the gestational timing of the exposure

    Genome-wide analysis of DNA methylation in buccal cells:A study of monozygotic twins and mQTLs

    No full text
    Background: DNA methylation arrays are widely used in epigenome-wide association studies and methylation quantitative trait locus (mQTL) studies. Here, we performed the first genome-wide analysis of monozygotic (MZ) twin correlations and mQTLs on data obtained with the Illumina MethylationEPIC BeadChip (EPIC array) and compared the performance of the EPIC array to the Illumina HumanMethylation450 BeadChip (HM450 array) for buccal-derived DNA. Results: Good-quality EPIC data were obtained for 102 buccal-derived DNA samples from 49 MZ twin pairs (mean age = 7.5 years, range = 1-10). Differences between MZ twins in the cellular content of buccal swabs were a major driver for differences in their DNA methylation profiles, highlighting the importance to adjust for cellular composition in DNA methylation studies of buccal-derived DNA. After adjusting for cellular composition, the genome-wide mean correlation (r) between MZ twins was 0.21 for the EPIC array, and cis mQTL analysis in 84 twins identified 1,296,323 significant associations (FDR 5%), encompassing 33,749 methylation sites and 616,029 genetic variants. MZ twin correlations were slightly larger (p < 2.2 × 10-16) for novel EPIC probes (N = 383,066, mean r = 0.22) compared to probes that are also present on HM450 (N = 406,822, mean r = 0.20). In line with this observation, a larger percentage of novel EPIC probes was associated with genetic variants (novel EPIC probes with significant mQTL 4.7%, HM450 probes with mQTL 3.9%, p < 2.2 × 10-16). Methylation sites with a large MZ correlation and sites associated with mQTLs were most strongly enriched in epithelial cell DNase I hypersensitive sites (DHSs), enhancers, and histone mark H3K4me3. Conclusions: We conclude that the contribution of familial factors to individual differences in DNA methylation and the effect of mQTLs are larger for novel EPIC probes, especially those within regulatory elements connected to active regions specific to the investigated tissue
    corecore