71 research outputs found

    A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis

    Full text link
    Β© 2017 RamΓ­rez-Guadiana et al. One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria

    Evidence that regulation of intramembrane proteolysis is mediated by substrate gating during sporulation in Bacillus subtilis

    Full text link
    Β© 2018 RamΓ­rez-Guadiana et al. http://creativecommons.org/licenses/by/4.0/. During the morphological process of sporulation in Bacillus subtilis two adjacent daughter cells (called the mother cell and forespore) follow different programs of gene expression that are linked to each other by signal transduction pathways. At a late stage in development, a signaling pathway emanating from the forespore triggers the proteolytic activation of the mother cell transcription factor ΟƒK. Cleavage of pro-ΟƒK to its mature and active form is catalyzed by the intramembrane cleaving metalloprotease SpoIVFB (B), a Site-2 Protease (S2P) family member. B is held inactive by two mother-cell membrane proteins SpoIVFA (A) and BofA. Activation of pro-ΟƒK processing requires a site-1 signaling protease SpoIVB (IVB) that is secreted from the forespore into the space between the two cells. IVB cleaves the extracellular domain of A but how this cleavage activates intramembrane proteolysis has remained unclear. Structural studies of the Methanocaldococcus jannaschii S2P homolog identified closed (substrate-occluded) and open (substrate-accessible) conformations of the protease, but the biological relevance of these conformations has not been established. Here, using co-immunoprecipitation and fluorescence microscopy, we show that stable association between the membrane-embedded protease and its substrate requires IVB signaling. We further show that the cytoplasmic cystathionine-Ξ²-synthase (CBS) domain of the B protease is not critical for this interaction or for pro-ΟƒK processing, suggesting the IVB-dependent interaction site is in the membrane protease domain. Finally, we provide evidence that the B protease domain adopts both open and closed conformations in vivo. Collectively, our data support a substrate-gating model in which IVB-dependent cleavage of A on one side of the membrane triggers a conformational change in the membrane-embedded protease from a closed to an open state allowing pro-ΟƒK access to the caged interior of the protease

    A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis

    Full text link
    During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the "A-Q complex") is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A-Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems

    A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis.

    Full text link
    How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the Ξ”ssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely supresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development

    Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species

    Get PDF
    In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis

    Deletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing

    Get PDF
    Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing

    An Oligopeptide Transporter of Mycobacterium tuberculosis Regulates Cytokine Release and Apoptosis of Infected Macrophages

    Get PDF
    Background: The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppA(MTB). Methodology/Principal Findings: OppA(MTB) was capable of binding the tripeptide glutathione and the nonapeptide bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496, situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of an oppA knockout mutant of M. smegmatis with OppA(MTB) confirmed the role of this transporter in importing glutathione and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the cytokines IL-1 beta, IL-6 and TNF-alpha was also compromised after inactivation of oppD. Conclusions: Taken together, these studies uncover the novel observations that this peptide transporter modulates the innate immune response of macrophages infected with M. tuberculosis

    A Negative Feedback Loop That Limits the Ectopic Activation of a Cell Type–Specific Sporulation Sigma Factor of Bacillus subtilis

    Get PDF
    Two highly similar RNA polymerase sigma subunits, ΟƒF and ΟƒG, govern the early and late phases of forespore-specific gene expression during spore differentiation in Bacillus subtilis. ΟƒF drives synthesis of ΟƒG but the latter only becomes active once engulfment of the forespore by the mother cell is completed, its levels rising quickly due to a positive feedback loop. The mechanisms that prevent premature or ectopic activation of ΟƒG while discriminating between ΟƒF and ΟƒG in the forespore are not fully comprehended. Here, we report that the substitution of an asparagine by a glutamic acid at position 45 of ΟƒG (N45E) strongly reduced binding by a previously characterized anti-sigma factor, CsfB (also known as Gin), in vitro, and increased the activity of ΟƒG in vivo. The N45E mutation caused the appearance of a sub-population of pre-divisional cells with strong activity of ΟƒG. CsfB is normally produced in the forespore, under ΟƒF control, but sigGN45E mutant cells also expressed csfB and did so in a ΟƒG-dependent manner, autonomously from ΟƒF. Thus, a negative feedback loop involving CsfB counteracts the positive feedback loop resulting from ectopic ΟƒG activity. N45 is invariant in the homologous position of ΟƒG orthologues, whereas its functional equivalent in ΟƒF proteins, E39, is highly conserved. While CsfB does not bind to wild-type ΟƒF, a E39N substitution in ΟƒF resulted in efficient binding of CsfB to ΟƒF. Moreover, under certain conditions, the E39N alteration strongly restrains the activity of ΟƒF in vivo, in a csfB-dependent manner, and the efficiency of sporulation. Therefore, a single amino residue, N45/E39, is sufficient for the ability of CsfB to discriminate between the two forespore-specific sigma factors in B. subtilis

    The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization

    Get PDF
    Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle
    • …
    corecore