574 research outputs found

    Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating

    Get PDF
    Sedentary aging results in a diminished rapid cutaneous vasodilator response to local heating. We investigated whether this diminished response was due to altered contributions of noradrenergic sympathetic nerves; assessing 1) the age-related decline and, 2) the effect of aerobic fitness. We measured skin blood flow (SkBF)(laser-Doppler flowmetry) in young (24±1 yr) and older (64±1 yr) endurance-trained and sedentary men (n=7 per group) at baseline and during 35 min of local skin heating to 42 °C at three forearm sites: 1) untreated; 2) bretylium tosylate (BT), preventing neurotransmitter release from noradrenergic sympathetic nerves; and 3) yohimbine and propranolol (YP), antagonising α- and β-adrenergic receptors. SkBF was converted to cutaneous vascular conductance (CVC) (SkBF/mean arterial pressure) and normalized to maximal CVC (%CVCmax) achieved by skin heating to 44 °C. Pharmacological agents were administered using microdialysis. In the young trained, the rapid vasodilator response was reduced at the BT and YP sites (P0.05) but treatment with BT did (P>0.05). Neither BT nor YP treatments affected the rapid vasodilator response in the older sedentary group (P>0.05). These data suggest that the age-related reduction in the rapid vasodilator response is due to an impairment of sympathetic-dependent mechanisms, which can be partly attenuated with habitual aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in young trained men, and non-adrenergic sympathetic cotransmitters (e.g., neuropeptide Y) in young sedentary and older trained men, possibly as a compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation appears not to involve the sympathetic system

    UK construction companies’ strategies in the face of business cycles

    Get PDF
    Firms in the construction industry have always had to deal with the challenges of the economic cycle and develop strategies to deal with the resulting fluctuations in their business environment. In the context of the 2008–2011 double-dip recession in the UK, the results of a survey targeting the top one hundred construction companies in the UK are reported here. This research is particularly intended to assess whether the strategies of large companies in the construction sector, when faced with the issues associated with the variation in the economic cycle, have changed since the previous business cycle (i.e. the 1986–1990 boom followed by the 1990–1991 recession). The survey reveals the challenges that companies have faced, reports on company behaviour and on the policies adopted. While there are many similarities between policies adopted during the recessionary periods of the two cycles, the research found notable changes in attitudes towards diversification, human resource management and price bidding

    Glutathione s-transferase omega in the lung and sputum supernatants of COPD patients

    Get PDF
    BACKGROUND: The major contribution to oxidant related lung damage in COPD is from the oxidant/antioxidant imbalance and possibly impaired antioxidant defence. Glutathione (GSH) is one of the most important antioxidants in human lung and lung secretions, but the mechanisms participating in its homeostasis are partly unclear. Glutathione-S-transferase omega (GSTO) is a recently characterized cysteine containing enzyme with the capability to bind and release GSH in vitro. GSTO has not been investigated in human lung or lung diseases. METHODS: GSTO1-1 was investigated by immunohistochemistry and Western blot analysis in 72 lung tissue specimens and 40 sputum specimens from non-smokers, smokers and COPD, in bronchoalveolar lavage fluid and in plasma from healthy non-smokers and smokers. It was also examined in human monocytes and bronchial epithelial cells and their culture mediums in vitro. RESULTS: GSTO1-1 was mainly expressed in alveolar macrophages, but it was also found in airway and alveolar epithelium and in extracellular fluids including sputum supernatants, bronchoalveolar lavage fluid, plasma and cell culture mediums. The levels of GSTO1-1 were significantly lower in the sputum supernatants (p = 0.023) and lung homogenates (p = 0.003) of COPD patients than in nonsmokers. CONCLUSION: GSTO1-1 is abundant in the alveolar macrophages, but it is also present in extracellular fluids and in airway secretions, the levels being decreased in COPD. The clinical significance of GSTO1-1 and its role in regulating GSH homeostasis in airway secretions, however, needs further investigations

    Pattern discrimination in a human subject suffering visual agnosia

    Get PDF
    Since suffering a stroke some four years ago, H.J.A. has exhibited lack of visual pattern recognition, and CT scans show areas of neuronal damage localized bilaterally in the posterior cerebral cortex (Humphreys & Riddoch, 1984

    Analog Computer Research

    Get PDF
    Contains reports on three research projects

    A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells

    Get PDF
    Glycoprotein folding is mediated by lectin-like chaperones and protein disulfide isomerases (PDIs) in the endoplasmic reticulum (ER). Calnexin and the PDI homologue ERp57 work together to help fold nascent polypeptides with glycans located toward the N-terminus of a protein, whereas PDI and BiP may engage proteins that lack glycans or have sugars toward the C-terminus. In this study, we show that the PDI homologue PDILT is expressed exclusively in post-meiotic male germ cells, in contrast to the ubiquitous expression of many other PDI family members in the testis. PDILT is induced during puberty and represents the first example of a PDI family member under developmental control. We find that PDILT is not active as an oxido-reductase, but interacts with the model peptide -somatostatin and nonnative BPTI in vitro, indicative of chaperone activity. In vivo, PDILT forms a tissue-specific chaperone complex with the calnexin homologue calmegin. The identification of a redox-inactive chaperone partnership defines a new system of testis-specific protein folding with implications for male fertility
    • …
    corecore