176 research outputs found

    Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda

    Get PDF
    Many research and monitoring networks in recent decades have provided publicly available data documenting environmental and ecological change, but little is known about the status of efforts to synthesize this information across networks. We convened a working group to assess ongoing and potential cross-network synthesis research and outline opportunities and challenges for the future, focusing on the US-based research network (the US Long-Term Ecological Research network, LTER) and monitoring network (the National Ecological Observatory Network, NEON). LTER-NEON cross-network research synergies arise from the potentials for LTER measurements, experiments, models, and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON measurements to provide standardization and broad scale coverage that complement LTER studies. Initial cross-network syntheses at co-located sites in the LTER and NEON networks are addressing six broad topics: how long-term vegetation change influences C fluxes; how detailed remotely sensed data reveal vegetation structure and function; aquatic-terrestrial connections of nutrient cycling; ecosystem response to soil biogeochemistry and microbial processes; population and species responses to environmental change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded cross-network syntheses involving multiple long-term ecosystem processes at regional or continental scales. These potential syntheses could provide a pathway for the broader scientific community, beyond LTER and NEON, to engage in cross-network science. These examples also apply to many other research and monitoring networks in the US and globally, and can guide scientists and research administrators in promoting broad-scale research that supports resource management and environmental policy

    Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

    Full text link
    We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique β\beta-decay transition ^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique β\beta-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.Comment: Version as accepted by PR

    Measurement of the Spectral Shape of the β-Decay of ¹³⁷Xe to the Ground State of ¹³⁷Cs in EXO-200 and Comparison with Theory

    Get PDF
    We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ¹³⁷Xe(7/2⁻)→¹³⁷Cs(7/2⁺). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump

    Measurement of the Spectral Shape of the β-Decay of ¹³⁷Xe to the Ground State of ¹³⁷Cs in EXO-200 and Comparison with Theory

    Get PDF
    We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ¹³⁷Xe(7/2⁻)→¹³⁷Cs(7/2⁺). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump

    Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

    Get PDF
    A search for neutrinoless double-β decay (0νββ) in Xe136 is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νββ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of Xe136 0νββ has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νββ half-life sensitivity for this analysis is 5.0×1025 yr with a total Xe136 exposure of 234.1 kg yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 3.5×1025 yr at the 90% confidence level

    Connective tissue growth factor in tumor pathogenesis

    Get PDF
    Key roles for connective tissue growth factor (CTGF/CCN2) are demonstrated in the wound repair process where it promotes myofibroblast differentiation and angiogenesis. Similar mechanisms are active in tumor-reactive stroma where CTGF is expressed. Other potential roles include prevention of hypoxia-induced apoptosis and promoting epithelial-mesenchymal transistion (EMT). CTGF expression in tumors has been associated to both tumor suppression and progression. For example, CTGF expression in acute lymphoblastic leukemia, breast, pancreas and gastric cancer correlates to worse prognosis whereas the opposite is true for colorectal, lung and ovarian cancer. This discrepancy is not yet understood
    corecore