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We report on a comparison between the theoretically predicted and experimentally measured
spectra of the first-forbidden non-unique B-decay tramsition *"Xe(7/27) — 37Cs(7/27). The
experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe
neutron source. The ultra-low background environment of EX0O-200, together with dedicated source
deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an
estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175
keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique
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[B-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the
context of the reactor antineutrino anomaly and spectral bump.

Introduction. The discrepancies between measured
and predicted antineutrino fluxes from nuclear reactors
constitute the so-called reactor antineutrino anomaly [T}
2]. In addition, an event excess (“bump”) against pre-
dicted spectra between 4 and 7 MeV of antineutrino
energy has been observed by the RENO [3], Double
Chooz [4], and Daya Bay [5] antineutrino-oscillation ex-
periments. The spectral bump was apparently present,
but not recognized then, in the much earlier Goesgen ex-
periment [6]. Predicting the reactor antineutrino flux is
difficult due to the uncertainties related to the treatment
of the 8 decays of the numerous fission fragments [7, [§].
One particular problem is the description of the forbid-
den (-decay transitions whose spectra are translated to
antineutrino spectra at energies relevant for the measure-
ment of the total flux and the spectral bump [9]. It has
been noted that many first-forbidden S-decay transitions,
like the presently discussed one, in the medium-mass
A = 89—143 nuclei play a key role in reactor antineutrino
spectra [9, [10]. Only a handful of electron spectra cor-
responding to JT <+ J~ [ transitions in this region has
been measured and with a rather poor precision [IT], [12].
According to [9, [10] the 8 spectra for the J* «» J~ tran-
sitions, relevant for solving the reactor anomaly and spec-
tral bump, deviate noticeably from the allowed shape,
the deviation being approximately a quadratic function
of the electron kinetic energy (see, e.g., Ref. [10], Fig-
ure 3, top panel). This is the case also for the 8 decay
of 137Xe (see Figure [2| lower panel), making this decay
an important test case of the computed spectral shapes.
In the case of ¥"Xe there is a measurement [I3] that
proposes a scheme for the decay of *7Xe to the ground
state and first excited state of 137Cs, but we could not
find measurements or calculations of the corresponding
[B-spectrum shapes. In the present work we perform the
[B-spectrum-shape measurement and calculation for the
decay to the ground state. Comparison with experiment
confirms that the calculated shape of the '37Xe decay
is correct, and thus there is hope that the effects of the
first-forbidden g decays lead to mitigation of the reactor
anomaly and possible explanation of the origins of the
spectral bump, as proposed by Hayen et al. [9] [10].

The problem of many of the electron spectra of the
first-forbidden §-decay transitions is connected to the un-
certainty of the effective value of the weak axial coupling
ga [14] and the enhancement of the axial-charge nuclear
matrix element (NME) by meson-exchange currents [15].
Recently, a sustained effort has gone to clarifying these
two burning issues [16]. Related to this, we point out
that the effective values of ga are more of effective cor-
rections to specific nuclear-theory frameworks than fun-
damental corrections to the weak axial coupling [I7]. For

some decays the spectral shape depends on the effective
value of ga and, to some extent, on the mesonic enhance-
ment [I4HI6]. The uncertainties related to these param-
eters are reflected as theoretical uncertainties in the pre-
dicted antineutrino spectra. Fortunately, the majority
of the shapes of electron spectra are not much affected
by the values of these quantities. In order to test the
accuracy of the theory framework used to compute the
electron spectra related to the reactor-antineutrino prob-
lem one needs (a) a measured electron spectral shape of
a forbidden S-decay transition in the nuclear mass region
relevant for the reactor antineutrino problem with (b) a
non-trivial shape and (c) independent of both g4 and the
mesonic enhancement.

The three requirements are met by the first-
forbidden non-unique S-decay transition 37Xe(7/27) —
137Cs(7/2+*GS). The condition (a) is accounted for by
the experimental spectral shape extracted in the present
work. The condition (b) is satisfied by the complex
spectral shape containing a pseudoscalar part with two
NMEs, a pseudovector part with three NMEs and a pseu-
dotensor part with one NME [I5, [16]. Furthermore, our
present calculations, based on the formalism of [I§] and
on its recent derivative [I9], show that point (c) is also
satisfied to a high level of precision.

Theoretical description of the forbidden B shape. For
the theoretical description of the first-forbidden 5~ decay
we adopt the expansion of Behrens and Biihring [I§].
NMEs up to next-to-leading order are included in the
calculations [19].

The nuclear-structure calculations were done using
the shell model code NuShellX@MSU [20] in a model
space spanned by the proton orbitals 0g7 /2, 1d5 /2, 1d3/2,
2512, and Ohyy/5 and the neutron orbitals Ohg,s, 1f7/2,
1f5/2, 2p3/2, 2p1/2, and 0’1:13/2 with the effective Hamil-
tonian jj56pnb [2I]. This interaction has previously been
used to study the mesonic-exchange effects on and ga-
dependence of the electron spectra of A = 135 nuclei [15],
as well as to predict the 3 shapes of the first-forbidden
decays contributing to the cumulative g spectra from nu-
clear reactors [9] [10]. While 137Xe is not one of the ma-
jor contributors itself, the neighbouring nuclei, such as
136,137.138] and 139140Xe  are [22]. The '¥"Xe ground-
state-to-ground-state decay to *7Cs (GS decay) turns
out to be one of the spectra with negligible shape de-
pendence on the adopted value of ga or the magnitude
of the mesonic enhancement effects on the axial-charge
matrix element. This is the case since the involved four
axial-vector NMEs dominantly contribute to the spec-
tral shape and thus ga simply gives the overall scaling
of the electron spectrum and, in turn, of the half-life.
This ga dominance is clearly visible in Figure [2| where



the ga dependent contribution (blue dots) is compared
with the full spectral shape (blue dotted line). The shape
factor C'(E) (ratio of the corrected spectrum to that cor-
responding to an allowed decay) is plotted in the bot-
tom frame of the figure. This transition is a perfect test
case for the accuracy and validity of the calculations of
the B spectra in the context of the reactor antineutrino
anomaly [9] [10]. This is particularly important since the
calculations of Hayen et al. [0, T0] propose corrections
to the traditional Huber-Mueller model [T}, 23] which ex-
plain, at least partially, the anomaly and spectral bump.

In contrast with the GS decay, the spectral shape of
the 37Xe decay to the first excited state of 137Cs (ES
decay) does depend on the value of gy and could, in
principle, be used to constrain its value. However, the
accompanying emission of a de-excitation ~ makes ac-
curate measurement of the ES decays (-spectrum shape
in EXO-200 challenging. Since both the motivation and
analysis approach are substantially different for the GS
and ES measurements, we consider the ES decay outside
the scope of this work and only focus on the GS decay.

Ezxperimental details and results. The EXO-200 de-
tector is a cylindrical time projection chamber (TPC).
It is filled with liquid xenon (LXe), consisting of 80.6%
of the isotope 2°Xe and 19.1% of '3*Xe, with the re-
maining balance comprised of other isotopes. The LXe
is housed in a cylindrical copper vessel of ~40 cm diam-
eter and ~44 cm length. The vessel is surrounded by
~50 cm of HFE [24], a hydrogen-rich heat transfer fluid
maintained inside a vacuum-insulated copper cryostat.
Further shielding is provided by at least 25 cm of lead in
all directions. A small diameter copper tube runs from
the outside of the lead shield through the HFE and wraps
around the outside of the TPC vessel. It allows one to
insert miniature radioactive calibration sources and place
them close to the active volume of the detector. Energy
depositions in the TPC produce ionization charge and
scintillation light. The charge and light signals are re-
constructed to provide energy and position of events. In
a given event, charge deposits, or clusters, that are sep-
arated by ~1 c¢m can be individually reconstructed. The
event is then classified as single-site (SS), or multi-site
(MS), depending on the number of spatially distinct re-
constructed clusters. More details about the EXO-200
design and performance are available in [25] 26]. The
reconstruction, Monte Carlo (MC) simulation, and anal-
ysis approaches are described in [27 28]. EXO0-200 is
designed to minimize radioactive backgrounds. Its data
rate above 1000 keV is dominated by the two-neutrino
double 3 decay of 136Xe [29)].

The experimental data used in this work were collected
during the AmBe neutron source calibration campaign
carried out in December 2018. 37Xe is produced by
neutron capture on 2¢Xe and decays to 37Cs with the
half-life of 3.818+0.013 min [30]. In ~67% of cases [31],
137Xe decays to the ground state of 7Cs. In ~31%

of cases, 1¥7Xe decays to a 5/2F excited state of 137Cs,
which de-excites by emission of a 455.5 keV ~-ray. The
neutrons were produced by the neutron source positioned
at the mid-plane of the TPC, 3 cm outside the LXe vol-
ume. The source contains ~65 pCi of 24! Am in the form
of a carrier-free 24! AmO, powder mixed with beryllium
metal powder. The mixture is contained in a 1.2 mm
diameter tungsten capsule, which is in turn contained
inside a 2.0 mm diameter stainless steel capsule that is
welded shut by electron-beam welding. The estimated
neutron activity of the source is ~90 Bq. More details
about the source construction and characterization can
be found in [32]. In ~60% of the cases [33], the neutron
emission from the source is accompanied by a 4439.8 keV
~-ray. The source is positioned several centimeters out-
side of the TPC during the calibrations, which leads to
some neutrons being captured in HFE by hydrogen nu-
clei. The capture is followed by the emission of a 2224.6
keV ~-ray. Additional v radioactivity is expected from
neutron inelastic scattering in HFE. While advantageous
for the energy calibration, the y-rays produced when the
AmBe source is deployed close to the TPC would consti-
tute a major background for the 3"Xe 3 decay measure-
ment. To avoid this, a special deployment procedure was
used. The deployment sequence consisted of repeated
“I36X e activation — 7Xe decay” cycles. During the de-
cay phases, the source was retracted outside of the lead
shield, ceasing the associated vy radioactivity. The length
of the periods was chosen to maximize the number of
detected '3"Xe decays. Figure [1] shows the rate of re-
constructed events in EX0-200 during one of the decay
periods when the source is retracted. The drop (rise) of
the rate at the end (beginning) of the activation periods
is clearly seen. The red lines indicate the placement of
the cuts to select the *7"Xe decay period. A total of 60
such periods is selected during the campaign. The de-
cay phase is defined as a period when the event rate is
less than 1.33 Hz. The timing cuts are placed at +30
(-30) seconds from each decay period’s start (end). The
integrated livetime is 8.73 hours.
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FIG. 1. Reconstructed event rate during the AmBe source
calibration. The vertical lines show the cuts that select *37Xe
decays.

The fiducial volume cuts are relaxed slightly, as com-



pared to Ref. [2§]. This increases the fiducial mass by
~5%, while still retaining the good agreement between
shapes of energy distributions in data and MC. The re-
laxed cuts admit a background increase that is negligible
for this study.

When 37Xe decays to the ground state of '7Cs, only
the B particle is emitted and detected. Electrons of
O(MeV) energy are reconstructed predominantly as SS
events in the detector. On the other hand, when the de-
cay proceeds to the 5/27 excited state (ES decay), both
the 8 and the de-excitation v deposit energy and are re-
constructed as an MS event in most cases. Therefore, the
137Xe GS decay spectrum can be examined in EXO-200
by looking at the energy distribution of the selected SS
events. However, several reconstruction and physics re-
lated effects introduce non-negligible differences between
the theoretical GS spectrum and the spectrum of the re-
constructed SS events. To take these effects into account,
the MC of the AmBe source is first used to track the neu-
trons up to the 36Xe atoms on which they are captured.
137X e decays, both GS and ES, are then generated from
the capture position distributions. The (3 energy is sam-
pled from the theoretical 8 spectrum. The decay prod-
ucts (S and de-excitation ) are tracked, and their energy
depositions are simulated and reconstructed to produce
the expected SS spectrum. This spectrum, along with
the theoretical one, are shown in Figure[2| At the lowest
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FIG. 2. (Top frame) Theoretical GS spectrum (blue dotted
line) and reconstructed MC SS spectrum (red solid line). The
theoretical GS spectrum shape is the same for all reasonable
ga and mesonic enhancements within the line width. The
ga-dependent contribution to the theoretical spectrum is also
shown as blue dots. Individual contributions of GS and ES
decays to the reconstructed spectrum are also shown as red
dashed and dash-doted lines, respectively. (Bottom frame)
Shape factor, C(E).

energy one can see the expected effect of the charge recon-
struction threshold, leading to the MC spectrum having a
lower intensity than the theoretical spectrum. While the
SS spectrum is dominated by the GS decays, a residual

peak at 455.5 keV is expected, due to ES decays that oc-
cur outside of the sensitive volume. For such events, the
B cluster of an ES decay is lost, while the de-excitation
~v-ray has a chance to travel to the fiducial region and
get reconstructed as a single cluster. At higher energies,
the intensity of the MC SS spectrum is lower than the
theoretical spectrum, due to reconstruction related ef-
fects and the production of Bremsstrahlung photons by
the B particles, which leads to some GS decays being re-
constructed as MS events. Finally, the slightly higher
apparent end-point in the MC spectrum is expected, due
to the finite energy resolution.

The detector’s energy scale is constrained using the
total of seven mono-energetic ~ lines obtained in EXO-
200 using radioactive calibration sources: 455.5 (AmBe),
661.7 (137Cs), 1173.2 (5°Co), 1332.5 (°°Co), 2224.6
(AmBe), 2614.5 (?2¥Th), and 4439.8 keV (AmBe). The
mean position of the full absorption peaks in the uncali-
brated energy spectra is found using a fit by a linear com-
bination of the Gaussian and error functions. The latter
function is an ad-hoc way to account for the shoulder to
the left of the peaks, comprised of Compton scattering
events, multi-site full absorption events with one or more
small charge clusters missing, and other events. The cal-
ibration runs collected closest in time to the AmBe cal-
ibration campaign are used. The same fiducial cuts are
used for the calibration events as for the *"Xe dataset.
The SS events are selected for all calibration lines, with
the exception of the 455.5 keV ¥7Cs de-excitation line.
Since in that case the de-excitation y is accompanied by a
[ decay, the two-cluster MS events within the timing cuts
are first selected. The energy distribution of the smaller
of the two charge clusters is then plotted for events in
which the larger of the two charge clusters has energy
~30 above 455.5 keV (560 keV). Figure [3| shows the re-
sulting spectrum. It is not possible to discern contribu-
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FIG. 3. Selected '3"Cs de-excitation  events. The Gaus-
sian+Erf fit to the uncalibrated charge energy is shown as
the red line.

tions of individual clusters to the total detected scintil-
lation light. So the reconstructed energy in this work is
based on charge signals only. The energy calibration ap-
proach used in this work extends the constrained energy



range in both directions, as compared to previous anal-
yses, at the expense of a worse energy resolution. After
the mean positions of all  lines are found, they are plot-
ted versus the true energies and fit by a linear function.
Figure [4] shows the resulting SS data energy calibration
that is used in this analysis. The residuals are typically
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FIG. 4. SS data energy calibration. Red line is the linear fit.
Best-fit parameters are also shown. The errors are statistical.

within £0.5%, not exceeding +1%.

Based on MC of the AmBe source, the main expected
backgrounds in the selected SS spectrum are '3°Xe and
64Cu. 13%Xe is produced by capture of the AmBe neu-
trons on 3*Xe, which constitutes ~19% of the xenon
target in EXO-200. 3°Xe undergoes a 3 decay with a
half-life of 9.14 hours and has a Q-value of 1051 keV.
64Cu is produced in the copper vessel (and other con-
struction elements) and undergoes a S+ /EC decay with
a half-life of 12.7 hours. Only a single 511 keV positron
annihilation «-ray is expected to be seen in the SS spec-
trum. In ~0.5% of cases, 54Cu electron captures to an
excited state of %4Ni that de-excites by a 1345.8 keV ~-
ray, which can also produce an SS event. The expected
SS spectra of 9Xe and 4Cu are generated by MC anal-
ogously to the case of ¥"Xe. The three spectral shapes
are then fit to the calibrated charge energy spectrum of
the selected SS events allowing the normalization of each
of the three components to float. Figure [5| shows the
selected SS events and the results of the fit. The good
agreement between the best-fit and the data shapes sup-
ports the expectation that %Cu and '3°Xe are the main
activation backgrounds.

A SS low energy cut of 1075 keV is chosen to remove
the 13°Xe and most of the *Cu events. The high energy
cut is set to 4175 keV, based on the Q-value of 37Xe
GS decay. Based on the fit, the residual background
contribution of 4Cu and '*Xe to the selected energy
range is 22.7(5) and 0.50(2) events, respectively. Two
known background contributions to the AmBe dataset
are two-neutrino double § and *°K decays, whose rates
are constrained by the EXO-200 “low background data”
(LB) [2§]. Taking into account the livetime and the cor-
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FIG. 5. Calibrated SS energy spectrum of events passing the
selection cuts (black points). Blue dotted, green dashed, and
cyan dot-dashed lines correspond to MC spectra of 37Xe,
135Xe, and %*Cu, respectively. Thick red line corresponds to
the sum of the three best-fit components. Thin magenta line
corresponds to the LB backgrounds, described in the text.
The reduced x? of the fit is shown in the legend.

rection for the slightly larger fiducial volume used in this
analysis, one expects 43 two-neutrino double 8 and 7.8
40K events, or ~1.1% of all the SS events in the selected
energy range. Other LB components are expected to con-
tribute less than 1 event total. The rate of the LB events
is known to ~10% relative uncertainty. The expected LB
events are removed from the dataset by subtracting their
MC spectra, normalized to the corresponding number of
expected events. The remaining dataset contains 4526
events. For a qualitative check of the purity of the se-
lected dataset, the time difference between each selected
event and the start time of the corresponding decay pe-
riod is histogrammed and fit by an exponential function
(Figure @ The best-fit half-life value, 3.81+£0.15 min, is
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FIG. 6. Time distribution of selected SS events (black) with
energies between 1075 and 4175 keV. The exponential fit is
shown as red solid line.

in good agreement with the known half-life of 3"Xe of
3.818+0.013 min [30].

Figure [7] shows the comparison between the observed
and expected GS spectra of the *"Xe events. The com-
parison range is from 1075 to 4175 keV. The calibrated
charge energy spectrum of the selected SS data events,
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FIG. 7. (Top frame) Best fit to the selected, calibrated, background-subtracted SS data events. The data points are shown in
black. The theoretical spectrum (after passing through MC) is shown in red. (Bottom frame) Residual differences between the
data and best-fit curve, normalized by the statistical errors, are shown in black. The constant fit to the residuals is shown by

dashed blue line. p0 corresponds to the constant term of the fit.

with the expected residual background contributions sub-
tracted, is shown in black on the top frame of the figure.
It is fit with the simulated shape based on the theoretical
calculation (red). The only parameter floating in the fit
is the total normalization. The reduced x? of the fit (also
shown) suggests a good agreement between the data and
expectation. The normalized residuals are shown on the
bottom frame of the figure. All residuals are within +2
o statistical error. The residuals are fit by a constant
(dashed blue line) trend line, with the best-fit parame-
ter shown. The residuals show no statistically significant
energy dependence.

Anything that can introduce an energy-dependent dis-
crepancy between the data and MC can systematically
affect the comparison shown on Figure [7] Given the
amount of the available statistics, we are sensitive to po-
tential systematics effects on the level of a few percent
or more. The data energy calibration is constrained to
the sub-percent level. The Gaussian+Erf fit model it-
self may be a source of systematics when extracting the
peaks mean positions. This effect was studied by EXO-
200 and is expected to introduce a ~3 keV bias, which
is sub-dominant to the calibration residuals (Figure [4]).
The residual background contamination in the selected
SS energy range contributes <1% of events and is known
to O(10%) relative uncertainty, suggesting only a frac-
tion of percent residual effect. Potential imperfections
of the MC and reconstruction can systematically affect
the comparison only if they lead to an energy-dependent

difference of the SS fraction or of the overall SS spectral
shape in the data and MC. Based on the latest published
comparison of data and MC in EXO-200 (Figure 1 in
Ref. [28]), the energy-dependent deviation is expected to
be small, compared to the statistical errors in Figure [7}

Discussion and conclusion. We calculate the 37Xe
GS spectrum and find that it has no significant depen-
dence on the adopted value of gp or the magnitude of
the mesonic enhancement effects on the axial-charge ma-
trix element. This makes this transition an ideal tool
to validate the accuracy of the 8 spectra calculations in
the context of the reactor antineutrino anomaly. We
perform a precise measurement of this first forbidden
non-unique (B-decay shape using the data collected dur-
ing an AmBe source deployment in EXO-200. A good
agreement between the predicted and observed spectra
is found. Therefore, this work provides both a rare mea-
surement of the first forbidden non-unique S-decay shape
and a novel test related to the calculated electron spec-
tral shapes of beta decays that contribute strongly to
the antineutrino flux from nuclear reactors. The hope
is that this test justifies the calculated spectral shapes
of [9, I0] thus implying that the spectral bump and
the flux anomaly could be explained, at least partly, by
the exact spectral shapes of the abundant first-forbidden
non-unique beta decays of the fission fragments in nuclear
reactors.
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