65 research outputs found

    CRISPR/Cas9 technology for targeted genome editing

    No full text
    CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are the segments of prokaryotic DNA containing short repeats in its nucleotide sequence. Today we know that this is a bacterial protection system against viral DNA. The molecular components of CRISPR/Cas9 system have been used for a gene editing in eukaryotes since 2013. But as any other method it also has the limitations and drawbacks. Here we are going to review the history of CRISPR biology and to discuss the possibilities that this new technology provides to researchers as well as the prospects for its use in the medical research and treatment.CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) – послідовності в геномі прокариот, які складаються з коротких повторів, що перемежовуються унікальними послідовностями. Це система бактеріальної захисту від вірусної ДНК. Молекулярні компоненти даної системи з 2013 року використовуються як інструмент редагування еукаріотічесого геному, хоча дана технологія і має деякі обмеження і недоліки. У даному огляді ми торкнемося історію застосування системи CRISPR / Cas9 і обговоримо можливості, які дана технологія надає для дослідження і лікування різних захворювань.CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) – последовательности в геноме прокариот, которые состоят из коротких повторов, перемежающихся уникальными последовательностями. Это система бактериальной защиты от вирусной ДНК. Молекулярные компоненты данной системы с 2013 года используются как инструмент редактирования эукариотического генома, хотя данная технология и имеет некоторые ограничения и недостатки. В данном обзоре мы затронем историю применения системы CRISPR/Cas9 и обсудим возможности, которые данная технология предоставляет для исследования и лечения различных заболеваний

    Latest results of the Tunka Radio Extension (ISVHECRI2016)

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15\% and the depth of the shower maximum with a resolution of better than 40 g/cm\textsuperscript{2}. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.Comment: proceedings of ISVHECRI2016 conferenc

    The amplitude calibration of the TUNKA radio extension (Tunka-Rex)

    Get PDF
    Tunka-Rex is an experiment for the radio detection of cosmic-ray air showers in Siberia. It consists of 25 radio antennas, distributed over an area of 1 km2. It is co-located with Tunka-133, an air-Cherenkov detector for cosmic-ray air showers. Triggered by Tunka-133, Tunka-Rex records the radio signal, emitted by air showers with energies above 1017 eV. Its goal is to probe the capabilities of a radio detector, especially for the determination of the energy and elemental composition of cosmic ray primaries. To compare the measurements of Tunka-Rex to other radio detectors or to models describing the radio emission, the radio signal in each station has to be reconstructed in terms of physical units. Therefore, all hardware components have to be calibrated. We show how the calibration is performed and compare it to simulations

    Tunka-Rex: Status, Plans, and Recent Results

    Get PDF
    Tunka-Rex, the Tunka Radio extension at the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Siberia, has recently been expanded to a total number of 63 SALLA antennas, most of them distributed on an area of one square kilometer. In the first years of operation, Tunka-Rex was solely triggered by the co-located air-Cherenkov array Tunka-133. The correlation of the measurements by both detectors has provided direct experimental proof that radio arrays can measure the position of the shower maximum. The precision achieved so far is 40 g/cm2, and several methodical improvements are under study. Moreover, the cross-comparison of Tunka-Rex and Tunka-133 shows that the energy reconstruction of Tunka-Rex is precise to 15 %, with a total accuracy of 20 % including the absolute energy scale. By using exactly the same calibration source for Tunka-Rex and LOPES, the energy scale of their host experiments, Tunka-133 and KASCADE-Grande, respectively, can be compared even more accurately with a remaining uncertainty of about 10 %. The main goal of Tunka-Rex for the next years is a study of the cosmic-ray mass composition in the energy range above 100 PeV: For this purpose, Tunka-Rex now is triggered also during daytime by the particle detector array Tunka-Grande featuring surface and underground scintillators for electron and muon detection

    Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex

    Get PDF
    We reconstructed the energy and the position of the shower maximum of air showers with energies E & 100PeV applying a method using radio measurements performed with Tunka-Rex. An event-to-event comparison to air-Cherenkov measurements of the same air showers with the Tunka-133 photomultiplier array confirms that the radio reconstruction works reliably. The Tunka-Rex reconstruction methods and absolute scales have been tuned on CoREAS simulations and yield energy and Xmax values consistent with the Tunka-133 measurements. The results of two independent measurement seasons agree within statistical uncertainties, which gives additional confidence in the radio reconstruction. The energy precision of Tunka-Rex is comparable to the Tunka-133 precision of 15 %, and exhibits a 20% uncertainty on the absolute scale dominated by the amplitude calibration of the antennas. For Xmax, this is the first direct experimental correlation of radio measurements with a different, established method. At the moment, the Xmax resolution of Tunka-Rex is approximately 40 g/cm2. This resolution can probably be improved by deploying additional antennas and by further development of the reconstruction methods, since the present analysis does not yet reveal any principle limitations

    V.V. Davydov – the founder of significant scientific school and director of the Psychological Institute

    No full text
    The article presents the stages of biography of the famous Russian psychologist Davydov, who was a brilliant leader of a large scientific group, director of the Psychological Institute of the RAE. The content of the work of Davydov’s scientific schools is based upon the three proverbial whales that define its theoretical, methodological and didactical boundaries: the theory of content generalization and con cept formation, psychological theory of learning activity and the system of developmental teaching. The article also outlines the results of researches conducted by V.V. Davydov’s scientific group. It is demon strated that for evaluating the effectivity of learning activity, the systems of assessment of theoretical thinking and its components (such as analysis, reflection, planning, systemic characteristics of thinking) were elaborated for different object matter. Also the scientific group elaborated the criteria for assessing the levels of learning activity development, as a whole as well as its separate components. The scientific school of V.V. Davydov is a living and evolving organism. The disciples and followers of Davydov conduct empirical research that bring his ideas to life. The article analyzes the philosophical, methodological and psychological foundations of Davydov’s scientific school. The content of Davydov’s debates with Vygotsky concerning the mechanisms of theo retical generalization is outlined. Davydov’s point of view is illustrated by large empirical evidenc
    corecore