68 research outputs found

    Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    Get PDF
    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.SK and KR were supported by grants from the Swedish Cancer Foundation, the Swedish Research Council, the Alfred Österlund Foundation, the Crafoord Foundation, the Magnus Bergvall Foundation, and the Åke Wiberg Foundation; AB, DB and RWF by grants from the Wellcome Trust (094470/Z/10/Z) and British Heart Foundation (RG/15/4/31268).This is the final version of the article. It first appeared from the American Society for Biochemistry and Molecular Biology] via http://dx.doi.org/10.1074/jbc.M115.69340

    Increased Fibrosis and Interstitial Fluid Pressure in Two Different Types of Syngeneic Murine Carcinoma Grown in Integrin β3-Subunit Deficient Mice

    Get PDF
    Stroma properties affect carcinoma physiology and direct malignant cell development. Here we present data showing that αVβ3 expressed by stromal cells is involved in the control of interstitial fluid pressure (IFP), extracellular volume (ECV) and collagen scaffold architecture in experimental murine carcinoma. IFP was elevated and ECV lowered in syngeneic CT26 colon and LM3 mammary carcinomas grown in integrin β3-deficient compared to wild-type BALB/c mice. Integrin β3-deficiency had no effect on carcinoma growth rate or on vascular morphology and function. Analyses by electron microscopy of carcinomas from integrin β3-deficient mice revealed a coarser and denser collagen network compared to carcinomas in wild-type littermates. Collagen fibers were built from heterogeneous and thicker collagen fibrils in carcinomas from integrin β3-deficient mice. The fibrotic extracellular matrix (ECM) did not correlate with increased macrophage infiltration in integrin β3-deficient mice bearing CT26 tumors, indicating that the fibrotic phenotype was not mediated by increased inflammation. In conclusion, we report that integrin β3-deficiency in tumor stroma led to an elevated IFP and lowered ECV that correlated with a more fibrotic ECM, underlining the role of the collagen network for carcinoma physiology

    Combined Anti-Angiogenic Therapy Targeting PDGF and VEGF Receptors Lowers the Interstitial Fluid Pressure in a Murine Experimental Carcinoma

    Get PDF
    Elevation of the interstitial fluid pressure (IFP) of carcinoma is an obstacle in treatment of tumors by chemotherapy and correlates with poor drug uptake. Previous studies have shown that treatment with inhibitors of platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF) signaling lowers the IFP of tumors and improve chemotherapy. In this study, we investigated whether the combination of PDGFR and VEGFR inhibitors could further reduce the IFP of KAT-4 human carcinoma tumors. The tumor IFP was measured using the wick-in-needle technique. The combination of STI571 and PTK/ZK gave an additive effect on the lowering of the IFP of KAT-4 tumors, but the timing of the treatment was crucial. The lowering of IFP following combination therapy was accompanied by vascular remodeling and decreased vascular leakiness. The effects of the inhibitors on the therapeutic efficiency of Taxol were investigated. Whereas the anti-PDGF and anti-VEGF treatment did not significantly inhibit tumor growth, the inhibitors enhanced the effect of chemotherapy. Despite having an additive effect in decreasing tumor IFP, the combination therapy did not further enhance the effect of chemotherapy. Simultaneous targeting of VEGFR and PDGFR kinase activity may be a useful strategy to decrease tumor IFP, but the timing of the inhibitors should be carefully determined

    Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-1 alpha and transforming growth factor-beta 1

    No full text
    We have examined the effects of three macrophagederived cytokines, platelet-derived growth factor (PDGF), transforming growth factor-01 (TGF-01) and interleukin-1 a (IL-la) on the contraction of collagen type I gels populated by human foreskin fibroblasts. Contraction was quantified as loss in gel weight. Both PDGF-AA and PDGF-BB were found to induce a rapid collagen-gel contraction. TGF-/J1 also stimulated gel contraction but with a delayed onset and at a slower rate than the PDGF-stimulated contraction. Rabbit polyclonal IgGs recognizing PDGF-AA and PDGF-BB, respectively, specifically inhibited the effects of the corresponding PDGF Lsoforms. However, the stimulatory effect of TGF-/S1 was not affected by any of the anti-PDGF antibodies. The ability of PDGF to stimulate contraction became less pronounced in collagen gel cultures grown in the absence of growth factors over periods of several days. Under the same conditions, the stimulatory effect of TGF-/J1 was not reduced. The reduced response to PDGF may be due to reduced tension on fibroblasts growing in collagen gels, since fibroblasts on free-floating gels showed a marked reduction in PDGF-BB-induced PDGF ^-receptor aggregates when compared to fibroblasts on attached collagen gels. LL-1 a inhibited initial collagen gel contraction, and at later stages induced a visible degradation of the collagen gels, presumably due to the generation of collagenase activity. The combination of IL-la and PDGF-BB stimulated initial collagen gel contraction, although less effectively than PDGF-BB alone. At later stages, collagen gel degradation was stimulated by this combination of cytokines. In contrast, the combination of IL-la and TGF-/51 did not stimulate collagen gel contraction, or any visible collagen gel degradation. Our data suggest that fibroblast-mediated collagen gel contraction can be modulated by cytokines via different mechanisms. Our data are of importance in the understanding of the modulatory roles of cytokines in connective tissue cell activities in inflammatory processes, such as wound healing

    Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma.

    Get PDF
    Research on the biology of the tumor stroma has the potential to lead to development of more effective treatment regimes enhancing the efficacy of drug-based treatment of solid malignancies. Tumor stroma is characterized by distorted blood vessels and activated connective tissue cells producing a collagen-rich matrix, which is accompanied by elevated interstitial fluid pressure (IFP), indicating a transport barrier between tumor tissue and blood. Here, we show that the collagen-binding proteoglycan fibromodulin controls stroma structure and fluid balance in experimental carcinoma. Gene ablation or inhibition of expression by anti-inflammatory agents showed that fibromodulin promoted the formation of a dense stroma and an elevated IFP. Fibromodulin-deficiency did not affect vasculature but increased the extracellular fluid volume and lowered IFP. Our data suggest that fibromodulin controls stroma matrix structure that in turn modulates fluid convection inside and out of the stroma. This finding is particularly important in relation to the demonstration that targeted modulations of the fluid balance in carcinoma can increase the response to cancer therapeutic agents

    Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    No full text
    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function
    • …
    corecore