363 research outputs found

    Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding

    Full text link
    We present Clinical Camel, an open large language model (LLM) explicitly tailored for clinical research. Fine-tuned from LLaMA-2 using QLoRA, Clinical Camel achieves state-of-the-art performance across medical benchmarks among openly available medical LLMs. Leveraging efficient single-GPU training, Clinical Camel surpasses GPT-3.5 in five-shot evaluations on all assessed benchmarks, including 64.3% on the USMLE Sample Exam (compared to 58.5% for GPT-3.5), 77.9% on PubMedQA (compared to 60.2%), 60.7% on MedQA (compared to 53.6%), and 54.2% on MedMCQA (compared to 51.0%). In addition to these benchmarks, Clinical Camel demonstrates its broader capabilities, such as synthesizing plausible clinical notes. This work introduces dialogue-based knowledge encoding, a novel method to synthesize conversational data from dense medical texts. While benchmark results are encouraging, extensive and rigorous human evaluation across diverse clinical scenarios is imperative to ascertain safety before implementation. By openly sharing Clinical Camel, we hope to foster transparent and collaborative research, working towards the safe integration of LLMs within the healthcare domain. Significant challenges concerning reliability, bias, and the potential for outdated knowledge persist. Nonetheless, the transparency provided by an open approach reinforces the scientific rigor essential for future clinical applications.Comment: for model weights, see https://huggingface.co/wanglab

    Ruptured abdominal aortic aneurysm, a “two-hit” ischemia/reperfusion injury: Evidence from an analysis of oxidative products

    Get PDF
    AbstractPurpose: Ruptured abdominal aortic aneurysm (RAAA) remains a lethal condition despite improvements in perioperative care. The consequences of RAAA are hypothesized to result from a combination of two ischemia/reperfusion events: hemorrhagic shock and lower torso ischemia. Ischemia/reperfusion results in tissue injury by diverse mechanisms, which include oxygen free radical–mediated injury produced from activated neutrophils, xanthine oxidase, and mitochondria. Oxygen-free radicals attack membrane lipids, resulting in membrane and subsequently cellular dysfunction that contributes to postoperative organ injury/failure. The purpose of this investigation was to quantify the oxidative injury that occurs as a result of the ischemia/reperfusion events in RAAAs and elective AAAs. Methods: Blood samples were taken from 22 patients for elective AAA repair and from 14 patients for RAAA repair during the perioperative period. Plasma F2 -isoprostanes were extracted, purified, and measured with an enzyme immunoassay. Aldehydes and acyloins were purified and quantified. Neutrophil oxidative burst was measured in response to a receptor independent stimulus (phorbol 12-myristate 13-acetate) with luminol-based chemiluminescence. Results: Plasma from patients with RAAAs showed significantly elevated F2 -isoprostane levels on arrival at hospital and were significantly elevated as compared with the levels of patients for elective repair throughout the perioperative period (two-way analysis of variance, P < .0001). Multiple regression showed a significant relationship between the phagocyte oxidative activity and F2 -isoprostane levels (P < .013). Total acyloin levels were significantly higher in patients with RAAAs as compared with the levels in elective cases. Conclusion: The F2 -isoprostane levels, specific markers of lipid peroxidation, showed that patients with RAAAs had two phases of oxidative injury: before arrival at hospital and after surgery. The significant relationship between the postoperative increases in F2 -isoprostane levels and the neutrophil oxidant production implicates neutrophils in the oxidative injury that occurs after RAAA. New therapeutic interventions that attenuate neutrophil-mediated oxidant injury during reperfusion may decrease organ failure and ultimately mortality in patients with RAAAs. (J Vasc Surg 1999;30:219-28.

    Lack of group X secreted phospholipase A<sub>2</sub> increases survival following pandemic H1N1 influenza infection

    Get PDF
    The role of Group X secreted phospholipase A2 (GX-sPLA2) during influenza infection has not been previously investigated. We examined the role of GX-sPLA2 during H1N1 pandemic influenza infection in a GX-sPLA2 gene targeted mouse (GX−/−) model and found that survival after infection was significantly greater in GX−/− mice than in GX+/+ mice. Downstream products of GX-sPLA2 activity, PGD2, PGE2, LTB4, cysteinyl leukotrienes and Lipoxin A4 were significantly lower in GX−/− mice BAL fluid. Lung microarray analysis identified an earlier and more robust induction of T and B cell associated genes in GX−/− mice. Based on the central role of sPLA2 enzymes as key initiators of inflammatory processes, we propose that activation of GX-sPLA2 during H1N1pdm infection is an early step of pulmonary inflammation and its inhibition increases adaptive immunity and improves survival. Our findings suggest that GX-sPLA2 may be a potential therapeutic target during influenza

    New Rotation Periods in the Open Cluster NGC 1039 (M 34), and a Derivation of its Gyrochronology Age

    Full text link
    Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the cluster's age in a distance independent way, i.e., the so-called gyrochronology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the cluster's mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).Comment: accepted for publication in Astronomy & Astrophysic

    The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

    Get PDF
    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.Comment: 17 pages, 11 figures, accepted for publication by MNRA

    Photoproduction of phi(1020) mesons on the proton at large momentum transfer

    Get PDF
    The cross section for ϕ\phi meson photoproduction on the proton has been measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low four-momentum transfer, the differential cross section is well described by Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the data support a model where the Pomeron is resolved into its simplest component, two gluons, which may couple to any quark in the proton and in the ϕ\phi.Comment: 5 pages; 7 figure

    Deeply virtual and exclusive electroproduction of omega mesons

    Full text link
    The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.Comment: 15 pages,19 figure

    The representation of protein complexes in the Protein Ontology (PRO)

    Get PDF
    BACKGROUND: Representing species-specific proteins and protein complexes in ontologies that are both human- and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because proteins are often functional only as members of stable protein complexes, the PRO Consortium, in collaboration with existing protein and pathway databases, has launched a new initiative to implement logical and consistent representation of protein complexes. DESCRIPTION: We describe here how the PRO Consortium is meeting the challenge of representing species-specific protein complexes, how protein complex representation in PRO supports annotation of protein complexes and comparative biology, and how PRO is being integrated into existing community bioinformatics resources. The PRO resource is accessible at http://pir.georgetown.edu/pro/. CONCLUSION: PRO is a unique database resource for species-specific protein complexes. PRO facilitates robust annotation of variations in composition and function contexts for protein complexes within and between species
    corecore