181 research outputs found

    Foreign Direct Investment in Ireland: Policy Implications for Emerging Economies

    Get PDF
    The increasingly important role of multinational enterprises (MNEs) in the global economy is linked to questions of how the foreign direct investment (FDI) they control impacts on overall economic activity in the recipient countries. Of specific interest is the policy context in which such FDI flows into the developing country and how a government can influence the impact of those flows. This paper reviews some of the literature in two key contextual areas, namely, when the host country policy regime promotes FDI selectively, and secondly, where it promotes the creation of industrial clusters. It explores the insights of this literature for the development of the strong MNE sector in the Irish economy and draws lessons from the Irish experience for emerging economies.Note: Length:

    Osmotic stress induces JNK-dependent embryo invasion in a model of implantation

    Get PDF
    In vitro culture during assisted reproduction technologies (ARTs) exposes pre-implantation embryos to environmental stressors, such as non-physiological nutritional, oxidative and osmotic conditions. The effects on subsequent implantation are not well understood but could contribute to poor ART efficiency and outcomes. We have used exposure to hyperosmolarity to investigate the effects of stress on the ability of embryos to interact with endometrial cells in an in vitro model. Culturing mouse blastocysts for 2 h in medium with osmolarity raised by 400 mosmol induced blastocoel collapse and re-expansion, but did not affect subsequent attachment to, or invasion of, the endometrial epithelial Ishikawa cell line. Inhibition of stress-responsive c-Jun N-terminal kinase (JNK) activity with SP600125 did not affect the intercellular interactions between these embryos and the epithelial cells. Four successive cycles of hyperosmotic stress at E5.5 had no effect on attachment, but promoted embryonic breaching of the epithelial cell layer by trophoblast giant cells in a JNK-dependent manner. These findings suggest that acute stress at the blastocyst stage may promote trophoblast breaching of the endometrial epithelium at implantation and implicates stress signalling through JNK in the process of trophectoderm differentiation into the invasive trophoblast necessary for the establishment of pregnancy. The data may lead to increased understanding of factors governing ART success rates and safety

    Apposition to endometrial epithelial cells activates mouse blastocysts for implantation.

    Get PDF
    How do interactions between blastocyst-stage embryos and endometrial epithelial cells regulate the early stages of implantation in an in vitro model?Mouse blastocyst apposition with human endometrial epithelial cells initiates trophectoderm differentiation to trophoblast, which goes on to breach the endometrial epithelium.In vitro models using mouse blastocysts and human endometrial cell lines have proven invaluable in the molecular characterisation of embryo attachment to endometrial epithelium at the onset of implantation. Genes involved in embryonic breaching of the endometrial epithelium have not been investigated in such in vitro models.This study used an established in vitro model of implantation to examine cellular and molecular interactions during blastocyst attachment to endometrial epithelial cells.Mouse blastocysts developed from embryonic day (E) 1.5 in vitro were hatched and co-cultured with confluent human endometrial adenocarcinoma-derived Ishikawa cells in serum-free medium. A scale of attachment stability based on blastocyst oscillation upon agitation was devised. Blastocysts were monitored for 48 h to establish the kinetics of implantation, and optical sectioning using fluorescence microscopy revealed attachment and invasion interfaces. Quantitative PCR was used to determine blastocyst gene expression. Data from a total of 680 mouse blastocysts are reported, with 3-6 experimental replicates. T-test and ANOVA analyses established statistical significance at P < 0.05, P < 0.01 and P < 0.001.Hatched E4.5 mouse blastocysts exhibited weak attachment to confluent Ishikawa cells over the first 24 h of co-culture, with intermediate and stable attachment occurring from 28 h (E5.5 + 4 h) in a hormone-independent manner. Attached embryos fixed after 48 h (E6.5) frequently exhibited outgrowths, characterised morphologically and with antibody markers as trophoblast giant cells (TGCs), which had breached the Ishikawa cell layer. Beginning co-culture at E5.5 also resulted in intermediate and stable attachment from E5.5 + 4 h; however, these embryos did not go on to breach the Ishikawa cell layer, even when co-culture was extended to E7.5 (P < 0.01). Blastocysts cultured from E4.5 in permeable transwell inserts above Ishikawa cells before transfer to direct co-culture at E5.5 went on to attach but failed to breach the Ishikawa cell layer by E6.5 (P < 0.01). Gene expression analysis at E5.5 demonstrated that direct co-culture with Ishikawa cells from E4.5 resulted in downregulation of trophectoderm transcription factors Cdx2 (P < 0.05) and Gata3 (P < 0.05) and upregulation of the TGC transcription factor Hand1 (P < 0.05). Co-culture with non-endometrial human fibroblasts did not alter the expression of these genes.None.The in vitro model used here combines human carcinoma-derived endometrial cells with mouse embryos, in which the cellular interactions observed may not fully recapitulate those in vivo. The data gleaned from such models can be regarded as hypothesis-generating, and research is now needed to develop more sophisticated models of human implantation combining multiple primary endometrial cell types with surrogate and real human embryos.This study implicates blastocyst apposition to endometrial epithelial cells as a critical step in trophoblast differentiation required for implantation. Understanding this maternal regulation of the embryonic developmental programme may lead to novel treatments for infertility.This work was supported by funds from the charities Wellbeing of Women (RG1442) and Diabetes UK (15/0005207), and studentship support for SCB from the Anatomical Society. No conflict of interest is declared

    Three years of harvest with the vector vortex coronagraph in the thermal infrared

    Full text link
    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.Comment: To appear in SPIE proceedings vol. 990

    An AgMIP Framework for Improved Agricultural Representation in Integrated Assessment Models

    Get PDF
    Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications

    Transcriptional response of endometrial cells to insulin, cultured using microfluidics

    Get PDF
    Obesity is a rapidly growing public health issue among women of reproductive age associated with decreased reproductive function including implantation failure. This can result from a myriad of factors including impaired gametes and endometrial dysfunction. The mechanisms of how obesity-related hyperinsulinaemia disrupts endometrial function are poorly understood. We investigated potential mechanisms by which insulin alters endometrial transcript expression. Ishikawa cells were seeded into a microfluidics device attached to a syringe pump to deliver a constant flow rate of 1 ÎĽL/min of the following: (i) control (ii) vehicle control (acidified PBS), or (iii) insulin (10 ng/mL) for 24 h (n = 3 biological replicates). Insulin-induced transcriptomic response of endometrial epithelial cells was determined via RNA sequencing, and DAVID and Webgestalt to identify Gene Ontology (GO) terms and signalling pathways. A total of 29 transcripts showed differential expression levels across two comparison groups (control vs vehicle control; vehicle control vs insulin). Nine transcripts were differentially expressed in vehicle control vs insulin comparison (P < 0.05). Functional annotation analysis of transcripts altered by insulin (n = 9) identified three significantly enriched GO terms: SRP-dependent co-translational protein targeting to membrane, poly(A) binding, and RNA binding (P < 0.05). The overrepresentation analysis found three significantly enriched signalling pathways relating to insulin-induced transcriptomic response: protein export, glutathione metabolism, and ribosome pathways (P < 0.05). Transfection of siRNA for RAPSN successfully knocked down expression (P < 0.05), but this did not have any effect on cellular morphology. Insulin-induced dysregulation of biological functions and pathways highlights potential mechanisms by which high insulin concentrations within maternal circulation may perturb endometrial receptivity
    • …
    corecore