57 research outputs found
Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress
Heat shock proteins (HSP) are essential molecular chaperones that play important roles in the stress stimulation of insects. Bemisia tabaci, a phloem feeder and
invasive species, can cause extensive crop damage through direct feeding and transmission
of plant viruses. Here we employed comprehensive genomics approaches to identity HSP
superfamily members in the Middle East Asia Minor 1 whitefly genome. In total, we identified 26 Hsp genes, including three Hsp90, 17 Hsp70, one Hsp60 and five sHSP (small
heat shock protein) genes. The HSP gene superfamily of whitefly is expanded compared
with the other five insects surveyed here. The gene structures among the same families
are relatively conserved. Meanwhile, the motif compositions and secondary structures of
BtHsp proteins were predicted. In addition, quantitative polymerase chain reaction analysis showed that the expression patterns of BtHsp gene superfamily were diverse across
different tissues of whiteflies. Most Hsp genes were induced or repressed by thermal stress
(40°C) and cold treatment (4°C) in whitefly. Silencing the expression of BtHsp70-6 significantly decreased the survival rate of whitefly under 45°C. All the results showed the
Hsps conferred thermo-tolerance or cold-tolerance to whiteflies that protect them from
being affected by detrimental temperature conditions. Our observations highlighted the
molecular evolutionary properties and the response mechanism to temperature assaults of
Hsp genes in whitefly
Causal networks of phytoplankton diversity and biomass are modulated by environmental context
Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24◦~N58◦) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management
Screening and validation of atherosclerosis PAN-apoptotic immune-related genes based on single-cell sequencing
BackgroundCarotid atherosclerosis (CAS) is a complication of atherosclerosis (AS). PAN-optosome is an inflammatory programmed cell death pathway event regulated by the PAN-optosome complex. CAS’s PAN-optosome-related genes (PORGs) have yet to be studied. Hence, screening the PAN-optosome-related diagnostic genes for treating CAS was vital.MethodsWe introduced transcriptome data to screen out differentially expressed genes (DEGs) in CAS. Subsequently, WGCNA analysis was utilized to mine module genes about PANoptosis score. We performed differential expression analysis (CAS samples vs. standard samples) to obtain CAS-related differentially expressed genes at the single-cell level. Venn diagram was executed to identify PAN-optosome-related differential genes (POR-DEGs) associated with CAS. Further, LASSO regression and RF algorithm were implemented to were executed to build a diagnostic model. We additionally performed immune infiltration and gene set enrichment analysis (GSEA) based on diagnostic genes. We verified the accuracy of the model genes by single-cell nuclear sequencing and RT-qPCR validation of clinical samples, as well as in vitro cellular experiments.ResultsWe identified 785 DEGs associated with CAS. Then, 4296 module genes about PANoptosis score were obtained. We obtained the 7365 and 1631 CAS-related DEGs at the single-cell level, respectively. 67 POR-DEGs were retained Venn diagram. Subsequently, 4 PAN-optosome-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) were identified via machine learning. Cellular function tests on four genes showed that these genes have essential roles in maintaining arterial cell viability and resisting cellular senescence.ConclusionWe obtained four PANoptosis-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) associated with CAS, laying a theoretical foundation for treating CAS
Hsp90 Interacts Specifically with Viral RNA and Differentially Regulates Replication Initiation of Bamboo mosaic virus and Associated Satellite RNA
Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3′ untranslated region (3′ UTR) of BaMV genomic RNA, but not with the 3′ UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3′ UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3′ UTR of BaMV RNA during the initiation of BaMV RNA replication
Causal networks of phytoplankton diversity and biomass are modulated by environmental context
Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24◦~N58◦) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management
Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer.
BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC. METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants. RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 × 10-5). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings. CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures
Fabrication of SiC Porous Ceramics by Foaming Method
In this work, hierarchically porous SiC ceramics were prepared via the foaming method. Porous ceramics with tunable, uniform, and bimodal pore structures were successfully fabricated in a facile way. The formation mechanisms of the 1st and 2nd modal macropores are the H2O2 foaming process and SiC particle overlap, respectively. The effect of pore-foaming agent amount, foaming temperature, and surfactant was investigated. According to the results, with increasing H2O2 amount, the porosity, pore size, and interconnectivity of the 1st modal pores increased, whereas bulk density and strength decreased. The porosity increased while the strength decreased as the foaming temperature increased. Surfactants increased pore interconnectivity and porosity. When the foaming temperature was 85 °C, and the addition of H2O2 was 5 wt.%, the porosity, bulk density, flexural strength, and compressive strength were 56.32%, 2.8301 g/cm3, 11.94 MPa, and 24.32 MPa, respectively. Moreover, SiC porous ceramics exhibited excellent corrosion resistance to acids and alkalis
Fabrication of SiC Porous Ceramics by Foaming Method
In this work, hierarchically porous SiC ceramics were prepared via the foaming method. Porous ceramics with tunable, uniform, and bimodal pore structures were successfully fabricated in a facile way. The formation mechanisms of the 1st and 2nd modal macropores are the H2O2 foaming process and SiC particle overlap, respectively. The effect of pore-foaming agent amount, foaming temperature, and surfactant was investigated. According to the results, with increasing H2O2 amount, the porosity, pore size, and interconnectivity of the 1st modal pores increased, whereas bulk density and strength decreased. The porosity increased while the strength decreased as the foaming temperature increased. Surfactants increased pore interconnectivity and porosity. When the foaming temperature was 85 °C, and the addition of H2O2 was 5 wt.%, the porosity, bulk density, flexural strength, and compressive strength were 56.32%, 2.8301 g/cm3, 11.94 MPa, and 24.32 MPa, respectively. Moreover, SiC porous ceramics exhibited excellent corrosion resistance to acids and alkalis
Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress
Heat shock proteins (HSP) are essential molecular chaperones that play important roles in the stress stimulation of insects. Bemisia tabaci, a phloem feeder andinvasive species, can cause extensive crop damage through direct feeding and transmissionof plant viruses. Here we employed comprehensive genomics approaches to identity HSPsuperfamily members in the Middle East Asia Minor 1 whitefly genome. In total, we identified 26 Hsp genes, including three Hsp90, 17 Hsp70, one Hsp60 and five sHSP (smallheat shock protein) genes. The HSP gene superfamily of whitefly is expanded comparedwith the other five insects surveyed here. The gene structures among the same familiesare relatively conserved. Meanwhile, the motif compositions and secondary structures ofBtHsp proteins were predicted. In addition, quantitative polymerase chain reaction analysis showed that the expression patterns of BtHsp gene superfamily were diverse acrossdifferent tissues of whiteflies. Most Hsp genes were induced or repressed by thermal stress(40°C) and cold treatment (4°C) in whitefly. Silencing the expression of BtHsp70-6 significantly decreased the survival rate of whitefly under 45°C. All the results showed theHsps conferred thermo-tolerance or cold-tolerance to whiteflies that protect them frombeing affected by detrimental temperature conditions. Our observations highlighted themolecular evolutionary properties and the response mechanism to temperature assaults ofHsp genes in whitefly
- …