17 research outputs found

    Carbapenem-resistant Citrobacter spp. isolated in Spain from 2013 to 2015 produced a variety of carbapenemases including VIM-1, OXA-48, KPC-2, NDM-1 and VIM-2

    Get PDF
    Objectives: There is little information about carbapenemase-producing (CP) Citrobacter spp.We studied the molecular epidemiology and microbiological features of CP Citrobacter spp. isolates collected in Spain (2013-15). Methods: In total, 119 isolates suspected of being CP by the EUCAST screening cut-off values were analysed. Carbapenemases and ESBLs were characterized using PCR and sequencing. The genetic relationship among Citrobacter freundii isolates was studied by PFGE. Results: Of the 119 isolates, 63 (52.9%) produced carbapenemases, of which 37 (58.7%) produced VIM-1, 20 (31.7%) produced OXA-48, 12 (19%) produced KPC-2, 2 (3.2%) produced NDM-1 and 1 (1.6%) produced VIM- 2; 9 C. freundii isolates co-produced VIM-1 plus OXA-48. Fourteen isolates (22.2%) also carried ESBLs: 8 CTX-M-9 plus SHV-12, 2 CTX-M-9, 2 SHV-12 and 2 CTX-M-15. Fifty-seven isolates (90.5%) were C. freundii, 4 (6.3%) were Citrobacter koseri, 1 (1.6%) was Citrobacter amalonaticus and 1 (1.6%) was Citrobacter braakii. By EUCAST breakpoints, eight (12.7%) of the CP isolates were susceptible to the four carbapenems tested. In the 53 CP C. freundii analysed by PFGE, a total of 44 different band patterns were observed. Four PFGE clusters were identified: cluster 1 included eight isolates co-producing VIM-1 and OXA-48; blaVIM-1 was carried in a class 1 integron (intI-blaVIM-1 - aacA4-dfrB1-aadA1-catB2-qacE¿1/sul1) and blaOXA-48 was carried in a Tn1999.2 transposon. Conclusions: We observed the clonal and polyclonal spread of CP Citrobacter spp. across several Spanish geographical areas. Four species of Citrobacter spp. produced up to five carbapenemase types, including coproduction of VIM-1 plus OXA-48. Some CP Citrobacter spp. isolates were susceptible to the four carbapenems tested, a finding with potential clinical implications

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    VvBOR1, the Grapevine Ortholog of AtBOR1, Encodes an Efflux Boron Transporter That is Differentially Expressed Throughout Reproductive Development of Vitis vinifera L.

    No full text
    Gonzalez, E (reprint author), Univ Talca, Inst Biol Vegetal & Biotecnol, Talca, Chile.Boron (B) is an essential micronutrient for normal development of roots, shoots and reproductive tissues in plants. Due to its role in the structure of rhamnogalacturonan II, a polysaccharide required for pollen tube growth, B deficiency has been associated with the occurrence of parthenocarpic seedless grapes in some varieties of Vitis vinifera L. Despite that, it is unclear how B is mobilized and accumulated in reproductive tissues. Here we describe the characterization of an efflux B transporter, VvBOR1, homolog to AtBOR1, which is involved in B xylem loading in Arabidopsis thaliana roots. VvBOR1-green fluorescent protein (GFP) fusion protein expressed in A. thaliana localizes in the proximal plasma membrane domain in root pericycle cells, and VvBOR1 overexpression restores the wild-type phenotype in A. thaliana bor1-3 mutant plants exposed to B deficiency. Complementation of a mutant yeast strain indicates that VvBOR1 corresponds to a B efflux transporter. Transcriptional analyses during grapevine reproductive development show that the VvBOR1 gene is preferentially expressed in flowers at anthesis and a direct correlation between the expression pattern and B content in grapes was established, suggesting the involvement of this transporter in B accumulation in grapevine berries

    The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure

    Get PDF
    We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) allele groups and alleles by PCR-SSP based typing in a total of 15,318 mixed ancestry Mexicans from all the states of the country divided into 78 sample sets, providing information regarding allelic and haplotypic frequencies and their linkage disequilibrium, as well as admixture estimates and genetic substructure. We identified the presence of 4268 unique HLA extended haplotypes across Mexico and find that the ten most frequent (HF > 1%) HLA haplotypes with significant linkage disequilibrium (Δ’≥0.1) in Mexico (accounting for 20% of the haplotypic diversity of the country) are of primarily Native American ancestry (A*02~B*39~DRB1*04~DQB1*03:02, A*02~B*35~DRB1*08~DQB1*04, A*68~B*39~DRB1*04~DQB1*03:02, A*02~B*35~DRB1*04~DQB1*03:02, A*24~B*39~DRB1*14~DQB1*03:01, A*24~B*35~DRB1*04~DQB1*03:02, A*24~B*39~DRB1*04~DQB1*03:02, A*02~B*40:02~DRB1*04~DQB1*03:02, A*68~B*35~DRB1*04~DQB1*03:02, A*02~B*15:01~DRB1*04~DQB1*03:02). Admixture estimates obtained by a maximum likelihood method using HLA-A/-B/-DRB1 as genetic estimators revealed that the main genetic components in Mexico as a whole are Native American (ranging from 37.8% in the northern part of the country to 81.5% in the southeastern region) and European (ranging from 11.5% in the southeast to 62.6% in northern Mexico). African admixture ranged from 0.0 to 12.7% not following any specific pattern. We were able to detect three major immunogenetic clusters correlating with genetic diversity and differential admixture within Mexico: North, Central and Southeast, which is in accordance with previous reports using genome-wide data. Our findings provide insights into the population immunogenetic substructure of the whole country and add to the knowledge of mixed ancestry Latin American population genetics, important for disease association studies, detection of demographic signatures on population variation and improved allocation of public health resources.1 Introduction 2 Subjects, materials and methods 2.1 Subjects 2.2 HLA typing 2.3 Statistical analysis 2.3.1 HLA allelic and haplotypic diversity 2.3.2 Admixture proportions calculations 2.3.3 Genetic diversity and genetic substructure assessment 3 Results 3.1 HLA allele groups 3.2 Haplotypic diversity 3.3 Admixture estimates 3.4 Genetic diversity and genetic substructure assessment 4 Discussion 4.1 Admixture estimates in Mexican populations and immunogenetic diversity 4.2 The Native American immunogenetic component in Mexican populations 4.3 Implications of the study of alleles and haplotypes of the HLA system in Mexican populations and final considerations 5 Conclusio

    VizieR Online Data Catalog: Stellar kinematics in CALIFA survey (Falcon-Barroso+, 2017)

    No full text
    This study is based on observations of 300 galaxies drawn from the CALIFA mother and extended samples1, which are part of the photometric catalog of the seventh data release (Abazajian et al., 2009ApJS..182..543A) of the Sloan Digital Sky Survey (SDSS). (1 data file)

    VizieR Online Data Catalog: Stellar kinematics in CALIFA survey (Falcon-Barroso+, 2017)

    No full text
    This study is based on observations of 300 galaxies drawn from the CALIFA mother and extended samples1, which are part of the photometric catalog of the seventh data release (Abazajian et al., 2009ApJS..182..543A) of the Sloan Digital Sky Survey (SDSS). (1 data file)
    corecore