461 research outputs found

    Robust Optical Richness Estimation with Reduced Scatter

    Full text link
    Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence matched filter richness estimator of Rozo et al. (2009), and evaluate their impact on the scatter in X-ray luminosity at fixed richness. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter, finding that sigma_lnLX|lambda=0.63+/-0.02 for clusters with M_500c >~ 1.6e14 h_70^-1 M_sun. The corresponding scatter in mass at fixed richness is sigma_lnM|lambda ~ 0.2-0.3 depending on the richness, comparable to that for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our richness estimator is very robust. Specifically, the filter employed when estimating richness can be calibrated directly from the data, without requiring a-priori calibrations of the red-sequence. We also demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background, as well as to the choice of photometric filter employed, so long as the filters span the 4000 A break of red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates of different clusters, even if they do not share the same photometric data. Appendix 1 includes "easy-bake" instructions for implementing our optimal richness estimator, and we are releasing an implementation of the code that works with SDSS data, as well as an augmented maxBCG catalog with the lambda richness measured for each cluster.Comment: Submitted to ApJ. 20 pages in emulateapj forma

    Orientation bias of optically selected galaxy clusters and its impact on stacked weak-lensing analyses

    Get PDF
    Weak-lensing measurements of the averaged shear profiles of galaxy clusters binned by some proxy for cluster mass are commonly converted to cluster mass estimates under the assumption that these cluster stacks have spherical symmetry. In this paper, we test whether this assumption holds for optically selected clusters binned by estimated optical richness. Using mock catalogues created from N-body simulations populated realistically with galaxies, we ran a suite of optical cluster finders and estimated their optical richness. We binned galaxy clusters by true cluster mass and estimated optical richness and measure the ellipticity of these stacks. We find that the processes of optical cluster selection and richness estimation are biased, leading to stacked structures that are elongated along the line of sight. We show that weak-lensing alone cannot measure the size of this orientation bias. Weak-lensing masses of stacked optically selected clusters are overestimated by up to 3–6 per cent when clusters can be uniquely associated with haloes. This effect is large enough to lead to significant biases in the cosmological parameters derived from large surveys like the Dark Energy Survey, if not calibrated via simulations or fitted simultaneously. This bias probably also contributes to the observed discrepancy between the observed and predicted Sunyaev–Zel’dovich signal of optically selected clusters

    Validation of Arachis pintoi as a Forage Legume in Commercial Dual Purpose Cattle Farms in Forest Margins of Colombia

    Get PDF
    An on-farm pilot project was initiated in the Andean piedmont of the Amazon basin in Caquetá, Colombia to determine the contribution of the forage peanut Arachis pintoi (CIAT 17434) introduced in degraded pastures to animal production and soil improvement. Early results show that milk production in dual purpose cattle farms can be increased by 20% with A. pintoi-based pastures. However, to enhance adoption of the legume by farmers there is a need to make adjustments on pasture management and assure supply of high quality seed in the region

    Integration of the kenzo system within sagemath for new algebraic topology computations

    Get PDF
    This work integrates the Kenzo system within Sagemath as an interface and an optional package. Our work makes it possible to communicate both computer algebra programs and it enhances the SageMath system with new capabilities in algebraic topology, such as the computation of homotopy groups and some kind of spectral sequences, dealing in particular with simplicial objects of an infinite nature. The new interface allows computing homotopy groups that were not known before

    The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters

    Get PDF
    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG-galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202+/-10 km/s for small groups to more than 854+/-102 km/s for large clusters. We show the scatter to be at most 40.5+/-3.5%, declining to 14.9+/-9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass-observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.Comment: 25 pages, 15 figures, 2 tables, published in Ap

    Exploring magnetic field properties at the boundary of solar pores: A comparative study based on SDO-HMI observations

    Full text link
    The Sun's magnetic fields play an important role in various solar phenomena. Solar pores are regions of intensified magnetic field strength compared to the surrounding photospheric environment, and their study can help us better understand the properties and behaviour of magnetic fields in the Sun. Up to now, there exists only a single study on magnetic field properties at the boundary region of a pore. Therefore, the main goal of this work is to increase the statistics of magnetic properties determining the pore boundary region. We analyse six solar pores using data from the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory. We apply image processing techniques to extract the relevant features of the solar pores and determine the boundary conditions of the magnetic fields. We find the maximal vertical magnetic field values on the boundaries of the studied solar pores to range from 1400~G to 1600~G, with a standard deviation between 7.8\% and 14.8\%. These values are lower than those reported in the mentioned preceding study. However, this can be explained by differences in spatial resolution as well as the type of data we used. The vertical magnetic field is an important factor in determining the boundary of solar pores, and it plays a more relevant role than the intensity gradient. The obtained information will be useful for future studies on the formation and evolution of magnetic structures of the Sun. Additionally, this study highlights the importance of high spatial resolution data for the purpose of accurately characterising the magnetic properties of solar pores.Comment: 9 pages, 7 figures. Accepted for publication in Astronomy and Astrophysics (A&A

    Exploiting Cross Correlations and Joint Analyses

    Full text link
    In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes are affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.Comment: Report from the "Dark Energy and CMB" working group for the American Physical Society's Division of Particles and Fields long-term planning exercise ("Snowmass"

    Photospheric plasma and magnetic field dynamics during the formation of solar AR 11190

    Full text link
    The Sun features on its surface typical flow patterns called the granulation, mesogranulation, and supergranulation. These patterns arise due to convective flows transporting energy from the interior of the Sun to its surface. In this paper we will shed light on the interaction between the convective flows in large-scale cells as well as the large-scale magnetic fields in active regions, and investigate in detail the statistical distribution of flow velocities during the evolution and formation of National Oceanic and Atmospheric Administration (NOAA) active region 11190. To do so, we employed local correlation tracking methods on data obtained by the Solar Dynamics Observatory (SDO) spacecraft in the continuum as well as on processed line-of-sight (LOS) magnetograms. We find that the flow fields in an active region can be modelled by a two-component distribution. One component is very stable, follows a Rayleigh distribution, and can be assigned to the background flows, whilst the other component is variable in strength and velocity range and can be attributed to the flux emergence visible both in the continuum maps as well as magnetograms. Generally, the plasma flows, as seen by the distribution of the magnitude of the velocity, follow a Rayleigh distribution even through the time of formation of active regions. However, at certain moments of large-scale fast flux emergence, a second component featuring higher velocities is formed in the velocity magnitudes distribution. The plasma flows are generally highly correlated to the motion of magnetic elements and vice versa except during the times of fast magnetic flux emergence as observed by rising magnetic elements. At these times, the magnetic fields are found to move faster than the corresponding plasma.Comment: 15 pages, 11 figures, 5 equations. Accepted for publication in Astronomy and Astrophysics (A&A

    Statistics of Magnification Perturbations by Substructure in the Cold Dark Matter Cosmological Model

    Full text link
    We study the statistical properties of magnification perturbations by substructures in strong lensed systems using linear perturbation theory and an analytical substructure model including tidal truncation and a continuous substructure mass spectrum. We demonstrate that magnification perturbations are dominated by perturbers found within a tidal radius of an image, and that sizable magnification perturbations may arise from small, coherent contributions from several substructures within the lens halo. We find that the root-mean-square (rms) fluctuation of the magnification perturbation is 10% to 20% and both the average and rms perturbations are sensitive to the mass spectrum and density profile of the perturbers. Interestingly, we find that relative to a smooth model of the same mass, the average magnification in clumpy models is lower (higher) than that in smooth models for positive (negative) parity images. This is opposite from what is observed if one assumes that the image magnification predicted by the best-fit smooth model of a lens is a good proxy for what the observed magnification would have been if substructures were absent. While it is possible for this discrepancy to be resolved via nonlinear perturbers, we argue that a more likely explanation is that the assumption that the best-fit lens model is a good proxy for the magnification in the absence of substructure is not correct. We conclude that a better theoretical understanding of the predicted statistical properties of magnification perturbations by CDM substructure is needed in order to affirm that CDM substructures have been unambiguously detected.Comment: ApJ accepted, minor change

    Hot Gas in Galaxy Groups: Recent Observations

    Full text link
    Galaxy groups are the least massive systems where the bulk of baryons begin to be accounted for. Not simply the scaled-down versions of rich clusters following self-similar relations, galaxy groups are ideal systems to study baryon physics, which is important for both cluster cosmology and galaxy formation. We review the recent observational results on the hot gas in galaxy groups. The first part of the paper is on the scaling relations, including X-ray luminosity, entropy, gas fraction, baryon fraction and metal abundance. Compared to clusters, groups have a lower fraction of hot gas around the center (e.g., r < r_2500), but may have a comparable gas fraction at large radii (e.g., r_2500 < r < r_500). Better constraints on the group gas and baryon fractions require sample studies with different selection functions and deep observations at r > r_500 regions. The hot gas in groups is also iron poor at large radii (0.3 r_500 - 0.7 r_500). The iron content of the hot gas within the central regions (r < 0.3 r_500) correlates with the group mass, in contrast to the trend of the stellar mass fraction. It remains to be seen where the missing iron in low-mass groups is. In the second part, we discuss several aspects of X-ray cool cores in galaxy groups, including their difference from cluster cool cores, radio AGN heating in groups and the cold gas in group cool cores. Because of the vulnerability of the group cool cores to radio AGN heating and the weak heat conduction in groups, group cool cores are important systems to test the AGN feedback models and the multiphase cool core models. At the end of the paper, some outstanding questions are listed.Comment: 31 pages, 9 figures, to appear in the focus issue on "Galaxy Clusters", New Journal of Physics, http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Galaxy%20Cluster
    • …
    corecore