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Abstract: This work integrates the Kenzo system within Sagemath as an interface and an optional
package. Our work makes it possible to communicate both computer algebra programs and it
enhances the SageMath system with new capabilities in algebraic topology, such as the computation
of homotopy groups and some kind of spectral sequences, dealing in particular with simplicial
objects of an infinite nature. The new interface allows computing homotopy groups that were not
known before.
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1. Introduction

Computational algebraic topology is an active area of research in mathematics with
numerous applications in different fields, ranging from data analysis [1] to image pro-
cessing [2]. There exist several programs specialized in algebraic topology computations,
such as ChomP [3], Perseus [4], and Javaplex [5]. Such programs are mainly focused on
computing topological invariants of finite spaces (by finite, we mean complexes with a
finite number of generators in each degree).

Effective homology is a technique developed by Sergeraert [6] which permits carrying
out some kinds of computations over infinite structures, via a homotopy equivalence
between chain complexes. Kenzo [7] is a computer algebra system that implements several
algorithms to compute the homology of infinite structures using effective homology. Infinite
spaces can arise in different areas of algebraic topology, for instance when loop spaces
or Eilenberg–MacLane spaces are involved. In addition, it also permits one to compute
algorithmically homotopy groups combining the Whitehead tower method [8] and the
effective homology technique, although it is restricted to 1-reduced simplicial sets. In
particular, let us remark that the Whitehead tower method requires the construction of
infinite Eilenberg–MacLane spaces. As far as we know, Kenzo is the only program that
is able to carry out this kind of computation over infinite structures, which makes it
a powerful software. Indeed, Kenzo has obtained some results which had never been
determined before [9]. However, it lacks a friendly interface and its use demands a deep
knowledge on the Common Lisp programming language, which can be considered tedious.
Moreover, the last official Kenzo release is specifically written in Allegro Common Lisp,
and it is not fully compatible with other Common Lisp dialects. There exist additional
modules for computing other algebraic topology structures such as spectral sequences,
pushouts, or discrete vector fields but they are available only in the personal websites
of the authors, usually for different outdated Kenzo versions, so that their installation is
not simple. Thus, the community around Kenzo is rather small and its features remain
unknown for many researchers in algebraic topology.
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In order to spread and ease the use of Kenzo, in 2011, a graphical interface for Kenzo
called fKenzo was launched [10]. However, it has barely been used due to its limitations: It
is too simplistic to deal with the richness of Kenzo and it is not maintained anymore.

That is, it can be stated that there exists no friendly and usable software to carry out
powerful computations (in terms of involving infinite structures) in algebraic topology.

On the other hand, SageMath [11] is a general purpose computer algebra system.
It is one of the most used programs in both education and research environments, in a
wide range of mathematical branches. It was created by William Stein in 2005 with the
mission statement of “Creating a viable free open source alternative to Magma, Maple,
Mathematica, and Matlab” and since then, it has become a much bigger project, with
hundreds of developers from around the world. It follows a “release quickly, release often”
approach, resulting in new versions with improvements and bugfixes being published
every few months. It uses Jupyter notebooks as a graphical user interface, and it is mainly
developed in Python. It follows the philosophy of “building the car instead of reinventing
the wheel”, that is, it includes many other libraries and systems developed for specific
purposes, making them work together under a common abstraction layer. Besides that, a
lot of specific code has been written directly in SageMath for computations that are not
covered by pre-existing open source software.

In the particular case of algebraic topology, SageMath includes modules for different
classes of complexes (simplicial, ∆, and cubical), and simplicial sets (plus other topological
objects of different nature, such as knots, links, and braids for example). From these objects,
SageMath can compute invariants such as their homology, both by using custom written
code or by leveraging an interface to CHomP [3]. As expected, SageMath only supports
this computation over objects of finite type (in general SageMath only supports simplicial
sets with a finite number of non-degenerate simplices with one exception: Classifying
spaces of finite groups, or more generally, nerves of finite monoids have infinitely many
non-degenerate simplices, but finitely many in each dimension). Since Kenzo [7] can handle
more general simplicial sets, it is a natural candidate to extend the SageMath functionalities
in this aspect.

Indeed, there already exists a way to communicate both programs, but only to con-
struct simplicial sets given a Kenzo output. This communication can be used to work with
some particular spaces and one needs to load manually in SageMath some external Kenzo
files, i.e., there is no proper connection between both systems (see [12] for further details).

The main contribution of this work is an interface to embed Kenzo and some of
its external modules within SageMath, so that both systems can be combined to carry
out computations in algebraic topology under a friendly interface by means of Python
commands. In addition, an optional package of Kenzo is provided as part of the SageMath
distribution. This package can be used as a standalone version of Kenzo, easing its
installation from a simple command. We also integrate in the interface and the package an
algorithm to compute homotopy groups of simply connected simplicial sets (which are not
necessarily 1-reduced). As far as we know, this is the first program that is able to carry out
that kind of computation. As an application, the interface allows computing homotopy
groups that were not known before.

This way, this work aims to solve the limitations of SageMath on computations in
algebraic topology, by integrating most of the computational features of Kenzo, and some
of its external modules in SageMath. We also expect to extend the use of Kenzo to a
broader community, allowing in this way further new applications in both research and
education. To this end, both programs are connected via the ECL library (a library interface
to Embeddable Common Lisp). The interface is transparent to the user, i.e., the user does
not notice that Kenzo is running within SageMath. This work required the development
of new code for both Kenzo and SageMath. Indeed, apart from developing the interface,
it has also been necessary to carefully adapt Kenzo code and its extensions to standard
Common Lisp in order to make them compatible with ECL.
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The germ of this work was presented at conference papers [13,14] (the second one was
distinguished with the Best Software Demonstration Award). At that point, the interface
was very basic and only homology groups were computed. Now, the work has vastly been
improved by adding new functionalities and computations:

• Computation of the join of two simplicial sets, wedges, smash products, homotopy
groups, spectral sequences, and finite topological spaces;

• Connection between chain complexes, simplicial sets, and morphisms of chain com-
plexes;

• Improvements and fixes of serious flaws in external packages, which caused erroneous
calculations;

• Integration of an algorithm to compute homotopy groups of simply connected (not
1-reduced) simplicial sets from Kenzo to our interface, in order to be able to use it
from Sagemath;

• Presentation of some examples of computations combining both systems by means of
the interface. That is, the interface allows us to carry out computations that would not
be possible using Kenzo and SageMath separately;

• We even show how we computed homotopy groups that were not known before.

The rest of the paper is organized as follows. In Section 2 both the Kenzo system
and the effective homology theory are introduced. The SageMath features about algebraic
topology are explained in detail in Section 3. The interface that we developed is explained
in Section 4, showing computations involving both systems. In Section 5, we present how
Kenzo computes homotopy groups, its integration within SageMath and, as an application
of our work, the discovering of new homotopy groups. In Section 6, we explain the
integration of some Kenzo external modules. Finally, Section 7 presents the conclusions
and further work.

2. Effective Homology Theory and the Kenzo System

Kenzo [7] is a symbolic computation system devoted to algebraic topology. It was
originally written in 1990 by Sergeraert and Rubio, under the name of EAT (Effective
Algebraic Topology) [15]. In 1998 it was rewritten by Sergeraert and Dousson, with the
current name of Kenzo. The last available version dates from 2008, but there exists a fork
maintained by Heber with compatibility improvements and bugfixes [16].

The topological spaces considered in Kenzo are represented by means of simplicial
sets (see [17] for definitions). The main feature of Kenzo is its ability to work with spaces
of an infinite nature. To this aim, it uses the Common Lisp programming language and
makes an intensive use of functional programming. The program allows in particular
the computation of homology and homotopy groups of complicated spaces, for instance,
iterated loop spaces of a loop space modified by a cell attachment, components of complex
Postnikov towers, etc., which were not known before [9]. Homology and homotopy groups
of infinite spaces are computed in Kenzo by means of the effective homology method,
introduced in [6] and deeply explained in [9].

The effective homology method is based on the notion of reduction between two chain
complexes C∗ and D∗, denoted C∗⇒⇒D∗, which is given by three maps f : C∗ → D∗, g :
D∗ → C∗, and h : C∗ → C∗+1 satisfying some special properties (see [9] for details) such that
the homology groups of C∗ and D∗ are canonically isomorphic. A homotopy equivalence
in Kenzo, denoted C∗⇐⇐⇒⇒D∗, is a pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗ (again, a canonical
isomorphism H∗(C) ∼= H∗(D) is obtained). When an object (for instance, a simplicial set) X
is built in Kenzo, an equivalence C∗(X)⇐⇐⇒⇒ E∗ is automatically constructed, where C∗(X)
is the chain complex associated with X and E∗ is a chain complex of finite type (that is,
finitely generated in each degree), so that the homology groups of E∗ can be determined
by means of elementary operations on matrices. In this way, the homology groups of the
object X, which can be of an infinite nature, can be obtained thanks to the isomorphism
H∗(X) ∼= H∗(C∗(X)) ∼= H∗(E).
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Let us consider as a didactical example the “minimal” simplicial model of the Eilenber-
g–MacLane space K(Z, 1) (see [17]), defined by K(Z, 1)n = Zn, and constructed in Kenzo
as follows.

> (setf kz1 (k-z 1))
[K1 Abelian-Simplicial-Group]

Let us observe the Common Lisp syntax, where the function setf is used to store in
the variable kz1 the result of the function (k-z 1). The Kenzo function k-z receives an
integer n (in our example, 1) and returns the Eilenberg–MacLane space K(Z, n).

The abelian simplicial group K(Z, 1) has an infinite number of simplices in every
dimension ≥ 1, so that the homology groups of kz1 cannot be elementarily computed. But
the effective homology of this object, automatically computed by Kenzo and stored in the
slot efhm, is an equivalence with the circle:

> (efhm kz1)
[K22 Homotopy-Equivalence K1 <= K1 => K16]
> (orgn (k 16))
(CIRCLE)

In this way, the homology groups of K(Z, 1) are computable through the finite equiva-
lent object K16:

> (homology kz1 0 3)
Homology in dimension 0:
Component Z
--- done---
Homology in dimension 1:
Component Z
--- done---
Homology in dimension 2:
--- done---

The technique that Kenzo uses to produce automatically the effective homology of an
object is based on the following ideas. If an object is of finite type, its effective homology is
trivial. For some “primitive” spaces, there are theoretical results that give explicitely an
equivalence with a chain complex of finite type (this is the case of the Eilenberg–MacLane
space K(Z, 1), which is known to have the same homotopy type of the circle S1). Moreover,
for several topological constructions such as twisted cartesian products, tensor products,
loop spaces, etc, the effective homology of the constructed object is determined from
the effective homology of the initial spaces. In this way, we can construct recursively
the effective homology of every space which can be obtained by applying the different
algebraic topology constructions available in Kenzo to the primitive cases.

The computation of homotopy groups is dealt in Kenzo by means of the Whitehead
tower method [8] (see Section 5 for the description of this algorithm), and it requires the
construction of a sequence of fibrations involving spaces of infinite type. As an example,
let us consider the Kenzo construction of the Whitehead tower for the computation of the
(well-known) result π6(S3) ∼= Z/12Z.

> (progn
(setf X (sphere 3))
(setf k3 (chml-clss X 3))
(setf t3 (z-whitehead X k3))
(setf X4 (fibration-total t3))
(setf k4 (chml-clss X4 4))
(setf t4 (z2-whitehead X4 k4))
(setf X5 (fibration-total t4))
(setf k5 (chml-clss X5 5))
(setf t5 (z2-whitehead X5 k5))
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(setf X6 (fibration-total t5))
(homology X6 6))

Homology in dimension 6:
Component Z/12Z
--- done---

Despite being the only program for algebraic topology able to carry out computations
over infinite structures, the main problem of the Kenzo system is that it requires the use of
a Common Lisp IDE and the user should be familiarized with functional programming,
as has been seen with the previous examples. Furthermore, Kenzo has been enhanced by
several authors with additional modules which are available on the personal websites of
the authors, but there is not a stable version including these modules and their installation
is not simple. In particular, there exists a module which automatizes the construction of
the Whitehead tower of fibrations for the computation of homotopy groups using only one
function [18]. In addition, there exists another module computing spectral sequences [19],
a useful tool of algebraic topology which in general is not constructive. This module can
be applied to determine spectral sequences associated with filtered complexes of infinite
type and makes it possible to determine Serre and Eilenberg–Moore spectral sequences
associated with fibrations when versions with effective homology are known for the initial
spaces. Recently, a new Kenzo module has been developed for computing homotopical
invariants of finite topological spaces [20], which can be considered a model for a wide
variety of topological spaces.

3. SageMath and Algebraic Topology

SageMath includes modules for constructing and computing properties of topological
objects in different flavors: Graphs, knots, braids, manifolds, and algebraic varieties. In
particular, some of them overlap with the scope of Kenzo: Chain complexes and simplicial
sets. In this section we will oversee a quick survey of the related capabilities.

3.1. Chain Complexes

SageMath supports finite chain complexes graded over a free abelian group. The
graded parts of the complex may be free modules over a commutative ring. They can
be created by providing the data that defines them in different formats. The simplest
ones are either a dictionary with the differential matrices indexed by the elements of the
grading group:
sage: C = ChainComplex ({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}); C
Chain c o m p l e x with at most 2 nonzero terms over Integer Ring
sage: ascii_art(C)

[3 0 0]
[0 0 0]

0 <-- C_1 <-------- C_0 <-- 0

Or, if the grading group is Z, just a list of matrices:
sage: m = matrix(ZZ, 2, 2, [0, -1, 0, 0])
sage: D = ChainComplex ([m, m], base_ring=GF (2)); D
Chain c o m p l e x with at most 3 nonzero terms over Finite Field
of size 2
sage: ascii_art(D)

[0 1] [0 1]
[0 0] [0 0]

0 <-- C_2 <------ C_1 <------ C_0 <-- 0

Note that, in the last example, since the base ring is the field of two elements, the
matrices are converted accordingly.

By default, the grading group is Z and the degree of the differential is 1. But we can
specify a different one:
sage: E = ChainComplex ({3:m,2:m}, degree_of_differential =-1)
sage: ascii_art(E)
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[ 0 -1] [ 0 -1]
[ 0 0] [ 0 0]

0 <-- C_1 <-------- C_2 <-------- C_3 <-- 0

Also, new complexes can be created from existing ones:
sage: ascii_art(E.dual ())

[ 0 0] [ 0 0]
[-1 0] [-1 0]

0 <-- C_3 <-------- C_2 <-------- C_1 <-- 0
sage: R.<x,y,z> = QQ[]
sage: C1 = ChainComplex ({1: matrix ([[x]])},
degree_of_differential =-1)
sage: C2 = ChainComplex ({1: matrix ([[y]])},
degree_of_differential =-1)
sage: ascii_art(C1.tensor(C2))

[ x]
[y x] [-y]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0

Once a chain complex has been created, we can compute its homology:
sage: C.homology (0)
Z x Z
sage: C.homology (1)
Z x C3
sage: C.homology (2)
0

3.2. Simplicial Sets

Simplicial sets with finitely many simplices in each dimension can be created in
SageMath either from a library, by applying operations to existing ones, or giving explicitly
the non-degenerate simplices and their boundaries. For example, three ways to create the
2-sphere are:
sage: S2_1 = simplicial_sets.Sphere (2)
sage: S2_2 = simplicial_sets.Sphere (1). suspension ()
sage: from s a g e . homology.simplicial_set import AbstractSimplex ,
SimplicialSet
sage: v = AbstractSimplex (0, name=’v’)
sage: f = AbstractSimplex (2, name=’f’)
sage: dv = v.apply_degeneracies (0)
sage: S2_3 = SimplicialSet ({f:(dv ,dv,dv)})

As expected, they have the same Betti numbers:
sage: S2_1.betti()
{0: 1, 1: 0, 2: 1}
sage: S2_2.betti()
{0: 1, 1: 0, 2: 1}
sage: S2_3.betti()
{0: 1, 1: 0, 2: 1}

The library provides functions to construct some specific cases including classifying
spaces, projective spaces (both real and complex), spheres, or the Klein bottle among others:
sage: P2 = simplicial_sets.ComplexProjectiveSpace (2); P2
CP^2

Moreover, simplicial sets can be created from simplicial complexes or delta complexes,
of which SageMath also has a predefined library:
sage: from s a g e . homology.simplicial_set import SimplicialSet
sage: S3 = simplicial_ c o m p l e x es.BarnetteSphere (); S3
Barnette’s triangulation of the 3-sphere
sage: KS3 = SimplicialSet(S3); KS3
Simplicial set with 92 non -degenerate simplices
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Some operations can be used to create new simplicial sets from existing ones, such
as the cartesian product, wedge, smash, cone, and suspension. They are all implemented
as methods that return a new simplicial set however, the returned object has some extra
structure that “remembers” the fact that it was constructed from other pieces, so the
different computations of properties and invariants are derived from the ones on the
pieces:
sage: W = S2_1.wedge(P2); W
Wedge: (S^2 v CP^2)
sage: W.factors ()
(S^2, CP^2)
sage: W.all_n_simplices (2)
[rho_0 , rho_1 , sigma_2 , s_1 s_0 *]
sage: S2_1.all_n_simplices (2)
[sigma_2 , s_1 s_0 v_0]
sage: P2.all_n_simplices (2)
[rho_0 , rho_1 , s_1 s_0 v]

Several invariants and properties of simplicial sets can be computed by specific
methods. Some of the most relevant ones are the underlying chain complex, homology,
cohomology (both the cohomology groups and the ring structure), fundamental group,
and the algebraic topological model:
sage: W.homology (2)
Z x Z
sage: W.homology (3)
0
sage: W.homology (4)
Z
sage: W.cohomology (2)
Z x Z
sage: W.cohomology (3)
0
sage: W.cohomology (4)
Z
sage: ascii_art(W.chain_ c o m p l e x ())

[ 2 0 -2] [ 0 -1 -1]
[-1 0 1] [ 1 1 0]
[ 0 0 0] [ 0 -1 -1]

0 <-- C_0 <-- 0 <-- C_2 <----------- C_3 <----------- C_4 <-- 0
sage: R = W.cohomology_ring (); R
Cohomology ring of Wedge: (S^2 v CP^2) over Rational Field
sage: R.basis()
Finite family {(0, 0): h^{0,0}, (2, 0): h^{2,0}, (2, 1):
h^{2,1}, (4, 0): h^{4 ,0}}
sage: table ([[a*b for b in R.basis ()] for a in R.basis ()])

h^{0,0} h^{2,0} h^{2 ,1} h^{4,0}
h^{2,0} 1/4*h^{4,0} 0 0
h^{2,1} 0 0 0
h^{4,0} 0 0 0

sage: [a.degree () for a in R.basis ()]
[0, 2, 2, 4]
sage: simplicial_sets.Torus (). fundamental_group ()
Finitely presented group < e0, e1 | e0*e1^-1*e0^-1*e1 >
sage: M = W.algebraic_topological_model (); M
(Chain homotopy between:

Chain c o m p l e x endomorphism of Chain c o m p l e x with at most 5
nonzero terms over Rational Field and Chain c o m p l e x
endomorphism of Chain c o m p l e x with at most 5 nonzero terms
over Rational Field ,

Chain c o m p l e x with at most 5 nonzero terms over Rational Field)
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As we can see, SageMath is quite powerful at computing invariants and properties of
simplicial sets. However, it is restricted to simplicial sets with a finite number of simplices
in each dimension.

4. The SageMath-Kenzo Interface

In this section we present the optional package to install Kenzo within SageMath and
the basics of the interface that connects both systems. The following sections will provide
further details on the external packages that we have incorporated and the features.

Our Kenzo package for SageMath is based on the Kenzo version by Heber [16],
which is an adapted version of the original Kenzo, but includes improvements to make it
compatible with any Common Lisp system. We make it easy to install our Kenzo optional
package in SageMath, simply by running:

sage -i kenzo
This command will download the source code of a fork of Heber’s version of Kenzo

that we maintain for this specific purpose, compile it inside the ECL interpreter that
SageMath includes, and install it. Allegedly, this can be an easy way to install Kenzo even
if we just plan to use it as a standalone program. More concretely, we can use Kenzo with
an ECL session via the command sage -ecl. This way, we could use Kenzo as usual, i.e.,
by means of Lisp commands.

This Kenzo optional package can also be used within a SageMath session via the
EclObject and ecl_eval functions, which are a wrapper around ECL objects and a func-
tion that evaluates a string in Lisp and returns the result, respectively. For instance, the
following commands load Kenzo and define the Eilenberg–MacLane space K(Z, 3) by
means of Lisp commands evaluated with ecl_eval in a SageMath session.
sage: from s a g e . libs.ecl import ecl_eval
sage: ecl_eval("(require :kenzo)")
sage: ecl_eval("(in-package #:cat)")
sage: ecl_eval("(setf K (k-z 3))")
<ECL: [K25 Abelian -Simplicial -Group]>

In the previous example, the execution is carried out in Kenzo via the ECL library,
but there is no proper connection to SageMath classes. In addition, this embedding of
Kenzo within SageMath does not ease its use: The same Lisp syntax and Kenzo specific
commands must be used.

Thus, we decided to develop an interface to communicate both systems. The interface
is a Python file that we include in the SageMath distribution. This interface automatically
loads Kenzo inside the ECL library, which is itself loaded as a C-library in SageMath.
This way, the communication between both systems is done via a C-library interface. It is
worth noting that there exist other alternatives to connect both systems, such as pseudo-
terminals or temporary files, but a C-library interface has a much lower overhead than
them. Moreover, the interface provides functions to create Kenzo objects, and wrappers
around them that allow one to create new objects (with the corresponding wrapper) and
call functions on them. When it makes sense, the output of those functions is converted to
the corresponding SageMath object.

The initial prototype of the interface was available in the SageMath distribution from
version 8.7 and included some basic functionalities. In particular, this interface exposed
functions to create spheres, Eilenberg–MacLane spaces, and Moore spaces. From these
spaces, it allowed the construction of cartesian products, classifying spaces, suspensions,
loop spaces, and tensor products. In addition, for each resulting space, the homology
method can construct the corresponding homology groups.

From SageMath version 9.2, the package and the interface have been enhanced by
adding some new functionalities. For instance, we have included some existing external
modules of Kenzo that allow computing homotopy groups of 1-reduced simplicial sets (by
using the Whitehead tower method) and some spectral sequences. In addition, we have
also provided methods for translating objects (such as chain complexes and simplicial sets)
both from SageMath to Kenzo and vice versa. This permits one to build simplicial objects



Mathematics 2021, 9, 722 9 of 24

in SageMath, translate them into Kenzo, and compute their homology and homotopy
groups. This new version also updates the Kenzo package to fix bugs detected in an
external module, to include an algorithm to compute homotopy groups of not 1-reduced
simplicial sets, and other features that are explained in detail in the following sections.
Furthermore, we also integrate in SageMath, a recent Kenzo module [20] about finite
topological spaces. This part of the work (which will be presented in Section 6.3) is not
included in SageMath 9.2, but it is currently under review by the Sagemath developers to
include in future releases.

Additionally, we provide a website that permits the use of SageMath and Kenzo with
the new version of the interface, including the work about finite topological spaces, in
an interactive environment. The website permits one to execute commands and explore
outputs (https://mybinder.org/v2/gh/jodivaso/examples-sage-kenzo/master?filepath=
examples.ipynb accessed on 24 March 2021).

After having reached this link, a standard Jupyter notebook is displayed with the new
package enabled and ready for use. This way, the last version of the interface to connect
SageMath and Kenzo can be used online with no need to install any software. Such a
website also contains all the SageMath code examples presented in this section and the
next two ones. The documentation of the new package is available in the official SageMath
reference manual [21].

The interface loads Kenzo and disables the standard output. It defines new classes and
methods, which are mainly wrappers of the Kenzo ones. By means of Python commands
(and calls to the EclObject and ecl_eval operators) it computes instructions in Kenzo and
provides the output as SageMath objects in a transparent way to the user.

Figure 1 presents the class diagram of the interface. The main class is KenzoObject,
which inherits from SageObject, and is a wrapper to a Kenzo object (which is an ECL ob-
ject).

KenzoObject

KenzoSpectralSequenceKenzoChainComplex

KenzoSimplicialSet

KenzoSimplicialGroup

KenzoChainComplexMorphism

Figure 1. Class diagram of the interface.

The other classes provide specific methods for each type of object (some of them
are incorporated to connect the interface to Kenzo external modules). For instance, the
KenzoSimplicialSet class possesses a method homotopy_group, which computes the n-th
homotopy group of the simplicial set (via a call to the corresponding function in a Kenzo
external package, see Section 5) and prints the result. The method also returns the result as
an object of the AbelianGroup class, which is part of SageMath. This way, the user could
invoke any operation provided by the AbelianGroup class over such an object.

It is worth distinguishing between two types of mathematical objects. On the one hand,
there are objects (which are necessarily finite) that can be represented in both SageMath
and Kenzo. Thus, they can be translated from SageMath to Kenzo and vice versa. For

https://mybinder.org/v2/gh/jodivaso/examples-sage-kenzo/master?filepath=examples.ipynb
https://mybinder.org/v2/gh/jodivaso/examples-sage-kenzo/master?filepath=examples.ipynb
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some of these objects that are available in both Kenzo and SageMath, both systems use
the same representation and then the translation between them is easy. This is the case
of simplicial sets: An object of the SageMath class SimplicialSet can be translated to
the wrapper class KenzoSimplicialSet defined in the interface via a conversion function
called KFiniteSimplicialSet. Nevertheless, there are other structures such as chain
complexes for which the representations in SageMath and Kenzo are different. As we have
explained in Section 3, SageMath can construct a finite chain complex by means of either a
dictionary with the differential matrices indexed by the elements of the grading group or,
if the grading group is Z, just a list of matrices. However, the Kenzo representation of a
finite chain complex consists of a function that provides a list of generators for each degree
and the differential maps described also as a function. Thus, both representations share the
same information (they represent the same finite chain complex), but in a different format
and then a conversion function must be provided. When dealing with this case of different
representations, our choice has been to implement the major part of the conversion in Lisp.
This permits us to keep the interface as simple as possible and the connection is made via
basic data types (integers, strings, lists, etc.). This choice means that the development of
the interface has required one to code in both SageMath and Kenzo. In the case of finite
chain complexes, we have implemented in Kenzo a function to construct a finite chain
complex from a dictionary whose values are the differential matrices, i.e., following the
same representation as SageMath uses. Then, the interface just presents the wrapper to
such a function.

On the other hand, there are objects that are of an infinite nature, and thus only Kenzo
is able to represent them. In this case, the object that represents an infinite space is directly
created in SageMath as a wrapper of the corresponding Kenzo object.

For instance, we have defined a function which returns the Eilenberg–MacLane space
K(π, n) as a Kenzo simplicial group, being π a cyclic group. To do that, we first define in
the interface the corresponding ECL objects for K(Z, n), K(Z/2Z, n), and K(Z/pZ, n).
k_z = EclObject("k-z")
k_z2 = EclObject("k-z2")
k_zp = EclObject("k-zp")

Then, those functions are used in the implementation of the wrapper function, which
returns an object that belongs to the class KenzoSimplicialGroup. That is, the implemen-
tation in SageMath internally calls the functions in Kenzo.
def EilenbergMacLaneSpace(G, n):

if G == ZZ:
kenzospace = k_z(n)
return KenzoSimplicialGroup(kenzospace)

elif G == AdditiveAbelianGroup ([2]):
kenzospace = k_z2(n)
return KenzoSimplicialGroup(kenzospace)

elif G in CommutativeAdditiveGroups () and G.is_cyclic ():
kenzospace = k_zp(G.cardinality (), n)
return KenzoSimplicialGroup(kenzospace)

else:
raise NotImplementedError("...")

Let us note again that we have had to develop code for SageMath (the interface, the
wrapper functions), as well as for Kenzo: New functions have been added and some
existing ones have been adapted in order to make the output compatible with the interface
and SageMath. For example, we have created functions in Kenzo to create finite simplicial
sets from the corresponding SageMath objects:
sage: from s a g e . interfaces.kenzo import KFiniteSimplicialSet
sage: CP3 = simplicial_sets.ComplexProjectiveSpace (3); CP3
CP^3
sage: KCP3 = KFiniteSimplicialSet(CP3); KCP3
[K609 Simplicial -Set]



Mathematics 2021, 9, 722 11 of 24

Finally, let us present an example of execution in SageMath via Kenzo involving
infinite structures. As we have already said, some direct computations of the interface of
Kenzo in SageMath include the construction of different elements of algebraic topology
which are available in Kenzo such as spheres, Eilenberg–MacLane spaces, cartesian prod-
ucts, tensor products, loop spaces, etc. Although some of them can also be constructed
in SageMath as explained in Section 3, Kenzo makes it possible to work with elements of
infinite nature so that it is interesting to include these functions in SageMath. For example,
we can construct the cartesian product of the Eilenberg–MacLane space K(Z/2Z, 2) and
the loop space of the sphere S3 and compute its homology groups as follows (the Python
function range(n) returns the sequence of numbers (0, 1, . . . , n− 1)):
sage: from s a g e . interfaces.kenzo import EilenbergMacLaneSpace
sage: from s a g e . interfaces.kenzo import Sphere
sage: E = EilenbergMacLaneSpace(AdditiveAbelianGroup ([2]), 2)
sage: S3 = Sphere (3)
sage: L = S3.loop_space ()
sage: X = E.cartesian_product(L)
sage: [X.homology(i) for i in range (8)]
[Z, 0, Z x C2, 0, Z x C2 x C4 , C2, Z x C2 x C2 x C4 , C2 x C2]

Let us remark that the loop space of S3 is not of finite type and then the space X is also
of an infinite nature. Moreover, the loop space constructor is not available in SageMath.
Kenzo is able to compute the homology groups of our space X using the effective homology
technique explained in Section 2.

5. Homotopy Groups

The computation of homotopy groups of topological spaces is known to be one of
the most challenging problems in the field of algebraic topology. As said in Section 2,
making use of the effective homology technique and the Whitehead method [8], Kenzo
is able to compute homotopy groups of 1-reduced simplicial sets by means of a tower of
fibrations (following the algorithm in [22]). In the Kenzo external module [18], a function
is provided which automatizes this construction and computes the homotopy group of
a 1-reduced simplicial set for a given dimension. However, this external module is not
able to work with spaces which are not 1-reduced. Moreover, we have found several bugs
in this module in different situations. Taking into account that SageMath users could be
interested in computing homotopy groups of spaces which are not 1-reduced, we have
decided not only to include the external module [18] in our interface, but also to correct
it and enhance it so that we can compute homotopy groups of simply-connected spaces
which are not necessarily 1-reduced.

The Whitehead tower method [8] for computing homotopy groups is based on the
following ideas. Given n ≥ 2, let X be an (n− 1)-connected simplicial set, that is, such
that H0(X) = Z and Hi(X) = 0 for 1 ≤ i ≤ n− 1. Let us suppose Hn(X) 6= 0, then the
Hurewicz theorem [23] claims that πi(X) = 0 for all 1 ≤ i ≤ n− 1 and πn(X) ∼= Hn(X).
The Whitehead tower method consists in producing a new space Xn+1 and a fibration with
fiber Gn+1 being an Eilenberg–MacLane space:

Gn+1 ≡ K(Hn(X), n− 1) −→ Xn+1 −→ X

such that πi(Xn+1) = 0 for 1 ≤ i ≤ n and πi(Xn+1) ∼= πi(X) for i ≥ n + 1. In particular,
πn+1(X) ∼= πn+1(Xn+1) ∼= Hn+1(Xn+1). The process is iterated over Xn+1, producing a
tower of fibrations:
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...

Gn+3 ≡ K(Hn+2(Xn+2), n + 1) Xn+3

Gn+2 ≡ K(Hn+1(Xn+1), n) Xn+2

Gn+1 ≡ K(Hn(X), n− 1) Xn+1

X

such that each Xk in the tower satisfies πk(Xk) ∼= Hk(Xk) ∼= πk(X), for k ≥ n + 1. In
this way, if we are able to compute all homology groups Hk(Xk), the homotopy groups
πk(X) can be determined. However, let us emphasize that if some Hk(Xk) appearing
in the construction are not finite (for instance, Z), then the Eilenberg–MacLane space
K(Hk(Xk), k− 1) and then the corresponding total space Xk+1 are not of finite type, so
that its homology groups cannot be directly determined and the construction of the tower
cannot always be completed. This problem is solved using the effective homology theory
as follows.

The Whitehead fibrations are implemented in the Kenzo system for simplicial sets X
which are 1-reduced, that is, which have only one vertex (0-simplex) and no non-degenerate
1-simplex. More concretely, let X be a connected (n− 1)-reduced simplicial set, that is, it has
only one 0-simplex and it does not contain any non-degenerate i-simplex for 1 ≤ i ≤ n− 1,
which implies H0(X) = Z and Hi(X) = 0 for 1 ≤ i ≤ n− 1. Let us suppose that Hn(X) ∼= Z
or Hn(X) ∼= Z/mZ for some m ≥ 2. In both cases, (different) Kenzo functions are available
which input the degree n and the simplicial set X and construct the Whitehead fibration:

Gn+1 ≡ K(Hn(X), n− 1) −→ Xn+1 −→ X.

The process can be iterated to obtain the whole tower of fibrations. However, the
only Eilenberg–MacLane spaces K(π, n), which are available in Kenzo and its external
modules are those with π = Z or π = Z/mZ for some m ≥ 2. When some homology
group Hk(Xk) is obtained such that it is a sum of several factors Z or Z/mZ, Hk(Xk) ≡
H1

k (Xk)⊕ · · · ⊕ Hr
k(Xk), then it is known that:

K(Hk(Xk), k− 1) ∼= K(H1
K(Xk), k− 1)× · · · × K(Hr

K(Xk), k− 1)

and the fibration:
Gk+1 ≡ K(Hk(Xk), k− 1) −→ Xk+1 −→ Xk

in the tower can be simulated by several fibrations as follows:
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...

Gk+2 ≡ K(Hk+1(Xk+1), k) Xk+2

Gk+1 ≡ Gr
k+1 ≡ K(Hr

k(Xk), k− 1) Xr
k+1 ≡ Xk+1

. . .

G2
k+1 ≡ K(H2

k (Xk), k− 1) X2
k+1

G1
k+1 ≡ K(H1

k (Xk), k− 1) X1
k+1

Gk ≡ K(Hk−1(Xk−1), k− 2) Xk

. . .

(1)

Again, let us observe that if some Hk(Xk) or H j
k(Xk) appearing in the construction are

not finite then the space K(Hk(Xk), k− 1) (or K(H j
k(Xk), k− 1)) and the total space Xk+1

are not of finite type. However, if the simplicial set X is finite or has effective homology,
then Kenzo computes in an automatic way the effective homology of the spaces Xk or
X j

k and then their homology groups can be determined. If we want to compute the s-th
homotopy group πs(X), it is sufficient to construct the tower up to dimension s (the space
Xs satisfies πs(X) ∼= πs(Xs) ∼= Hs(Xs)).

The external module [18] automatizes the construction of all the fibrations in the tower
in a recursive way and provides a function for computing the s-th homotopy group of a
(1-reduced) space. However, we have found three bugs in that external module, which we
have solved as follows:

• When some homology group Hk(Xk) in the tower is obtained such that it is a sum
of several factors Z or Z/mZ, Hk(Xk) ≡ H1

k (Xk) ⊕ · · · ⊕ Hr
k(Xk), the intermediate

spaces K(H j
k(Xk), k− 1) in diagram (1) are not (k− 1)-reduced. To solve this problem,

it is necessary to introduce a new step in the algorithm to produce a reduction from
K(H j

k(Xk), k− 1) to a (k− 1)-reduced space. This step was already available in Kenzo
but was not used in the external module [18], so that incorrect results were obtained.
We have solved this problem by using the corresponding Kenzo function producing
the necessary reduction;

• When some homology group Hk(Xk) is equal to zero, the external module [18] stops
the construction of the tower and claims that πi(X) = 0 for every i ≥ k. This
assumption is incorrect since there exist spaces with πk(X) = 0 but πi(X) 6= 0 for
some i > k. We have solved this bug by continuing the construction of the tower from
the following step such that Hi(Xk) 6= 0;

• Each fibration K(Hk(Xk), k− 1) −→ Xk+1 −→ Xk in the tower is defined by means
of a simplicial morphism of degree −1, called the twisting operator [17], τk : XK →
K(Hk(Xk), k− 1). This simplicial morphism is described by a well-known and existing
isomorphism between Hk(Xk) and K(Hk(Xk), k− 1)k−1 (the set of the (k− 1)-simplices
of K(Hk(Xk), k− 1)). In order to construct this twisting operator, Kenzo uses the Smith
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Normal Form (SNF) [24] of the differential matrix of degree k + 1 of the simplicial
set Xk, denoted Dk

k+1. The SNF algorithm of a matrix A consists in computing a
diagonal matrix D such that each diagonal element di,i divides di+1,i+1 and two
invertible matrices (corresponding to the changes of bases), P and Q, such that PAQ =
D. In particular, the SNF algorithm of Dk

k+1 produces a diagonal matrix whose entries
describe the (factors of the) group Hk(Xk). If Hk(Xk) is a sum of several factors, the
intermediate fibrations K(H j

k(Xk), k − 1) −→ X j
k+1 −→ X j−1

k+1 must be constructed
considering the diagonal elements of the SNF (which is unique). However, the
external module [18] uses a different decomposition of Hk(Xk) (by means of a diagonal
matrix which also describes the homology group but does not always satisfy the SNF
property), so that in some situations an error is found. We have solved this bug by
transforming the homology group factors used in the module into SNF, constructing
the intermediate fibrations following the correct order.

After solving the previous bugs and enhancing the external module [18] for computing
homotopy groups, we have included it in our interface for SageMath. To this aim, the
first step has been to make the Lisp code valid for ECL. Later, we have written SageMath
functions and wrappers, so that one can compute homotopy groups of (simply connected)
simplicial sets in SageMath.

Then, we have also considered the situation where the initial simplicial set X is
not 1-reduced but only simply connected (that is, such that H1(X) = 0 but there exist
non-degenerate simplices of dimension 1). In that situation, the twisting operator τk :
XK → K(Hk(Xk), k− 1) corresponding to the existing isomorphism between Hk(Xk) and
K(Hk(Xk), k− 1)k−1 cannot be as easily determined as before. However, Kenzo’s algorithm
can be modified by considering the two differential matrices of Xk of degrees k and k + 1,
denoted Dk

k and Dk
k+1 respectively, and following the same steps used for computing

homology groups. This new algorithm is described in the preprint [25] and can be of
great interest for computing homotopy groups of spaces which are simply connected, but
not 1-reduced. This is the case, as we will see in the following subsection, of simplicial
complexes which can be constructed in SageMath coming from different areas. We also
integrated it in our interface for SageMath.

In the following lines, we show an example of the computation of homotopy groups of
the wedge of the sphere S3 and the suspension of the torus (the Python function range(n,m)
returns the sequence of numbers (n, n + 1, . . . , m− 1)).
sage: from s a g e . interfaces.kenzo import KFiniteSimplicialSet
sage: S3 = simplicial_sets.Sphere (3)
sage: T = simplicial_sets.Torus()
sage: sT = T.suspension ()
sage: S3vsT = S3.wedge(sT)
sage: K = KFiniteSimplicialSet(S3vsT)
sage: [K.homotopy_group(i) for i in range (2,5)]
[Multiplicative Abelian group isomorphic to Z x Z,
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z,
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
x Z x C2 x C2 x C2 x C2 x C2]

Let us note that both systems are collaborating: The sphere, the torus, the suspension,
and wedge product are computed by means of functions that are available in SageMath,
whereas the computation of the homotopy groups of the constructed simplicial object is
done in Kenzo, since the simplicial set library provided by SageMath cannot deal with
that kind of computation. Let us also emphasize that the wedge construction produces a
simplicial set wich is not 1-reduced.

Discovering New Homotopy Groups

In the following example, we will show how the collaboration of SageMath and Kenzo
allowed us to compute some homotopy groups that were previously unknown.
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Given a set V of n vertices, the set of possible pairs P has (n
2) elements. A subset

S ⊆ P determines a graph on the vertices (where the elements of S are the edges of the
graph). For an integer i, a graph is said to be i-connected if it cannot become disconnected
by removing less than i vertices. It is clear that if S′ ⊆ S and S is not i-connected, then
S′ is also not i-connected. So, the set of all not i-connected graphs on n vertices forms a
simplicial complex, denoted as ∆i

n.
In [26], these simplicial complexes have been studied in relation to Knot Vasiliev

invariants and some theoretical results about their homotopy type have been stated:

• It is proved that ∆1
n has the homotopy type of a wedge of (n− 1)! spheres of dimension

n− 3;
• It is proved that, if n ≥ 3, ∆2

n has the homotopy type of a wedge of (n− 2)! spheres of
dimension 2n− 5;

• It is conjectured that ∆3
n has the homotopy type of a wedge of (n − 3)(n − 2)!/2

spheres of dimension 2n− 4.

SageMath can explicitely construct these complexes, and compute some of their
invariants, such as the homology:
sage: NI = simplicial_ c o m p l e x es.NotIConnectedGraphs (5 ,3); NI
Simplicial c o m p l e x of not 3-connected graphs on 5 vertices
sage: [NI.homology(i) for i in range (1 ,8)]
[0, 0, 0, 0, 0, Z^6, 0]

Now, thanks to the interface with Kenzo, we can also compute its homotopy groups,
but we must have some care to increase the size of the memory heap that will be used:
sage: import s a g e . libs.ecl
sage: from s a g e . homology.simplicial_set import SimplicialSet
sage: from s a g e . interfaces.kenzo import KFiniteSimplicialSet
sage: s a g e . libs.ecl.ecl_eval("(ext:set -limit ’ext:heap -size 0)")
sage: SNI = SimplicialSet(NI)
sage: KNI = KFiniteSimplicialSet(SNI)
sage: pi6 = KNI.homotopy_group (6); pi6
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z x Z

This is the expected result by Hurewicz’s theorem [23], but we can go further:
sage: pi7 = KNI.homotopy_group (7); pi7
Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C2 x C2

which, to our knowledge, was not known up to now. This computation took more than
14 h in a computing node with Intel Xeon E5-2650 v4, 2.20GHz processors, and 512 GB
of RAM.

Other homotopy groups πm of spaces ∆i
n obtained thanks to our Kenzo interface

in SageMath and the integrated algorithm for computing (non 1-reduced) homotopy
groups are shown in Table 1. Let us remark that the groups πm(∆2

4) could be theoretically
determined thanks to the results of [26], but the group π8(∆3

6) was also unknown. One can
also observe that all our results support the conjecture in [26].

Table 1. Homotopy groups of the complex of not i-connected graphs on n vertices.

K m πm(K)

∆2
4 4 C2

2
∆2

4 5 Z× C2
2

∆2
4 6 C2 × C2

12
∆3

6 8 Z36

6. Integration of Other External Modules

This section presents how we have integrated in our development other external
Kenzo modules, concretely the following ones:
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1. Joins and wedges [27], developed by Heras, 2010;
2. Spectral sequences [19], developed by the fourth author of this paper, 2006;
3. Finite topological spaces [20], developed by the first author of this paper, 2020.

We also explain new Kenzo functions (and their integration in SageMath) for working
with smash products. Some examples of execution are also shown.

6.1. Joins, Wedges, and Smash Products

The join and the wedge of two simplicial sets are two useful constructors in algebraic
topology which are implemented in an external module of Kenzo as particular cases of
pushout (see [27]). The wedge construction is also implemented in SageMath for finite
simplicial sets (as seen in the first example in Section 5), but we have considered including
the wedge Kenzo construction so that it can be applied to spaces of an infinite nature. In
those cases, the effective homology method can be used to determine the homology groups
and other topological invariants. The join construction is not available in SageMath, so that
it is also convenient to include it in our interface.

Since Kenzo functions for wedge and join are included in an external module (and
not in the standard version), again, the first step to make them available in SageMath has
been to modify the Lisp code and make it valid for ECL. Then, we have defined SageMath
functions for computing wedges and joins as follows.

First of all, we consider the wedge of the torus with the loop space of the sphere S2.
sage: from s a g e . interfaces.kenzo import Sphere
sage: from s a g e . interfaces.kenzo import KFiniteSimplicialSet
sage: T1 = simplicial_sets.Torus()
sage: T = KFiniteSimplicialSet(T1)
sage: S2 = Sphere (2)
sage: lS2 = S2.loop_space ()
sage: TvlS2 = T.wedge(lS2)
sage: [TvlS2.homology(i) for i in range (1,5)]
[Z x Z x Z, Z x Z, Z, Z]

Let us note that once again both systems are collaborating for the task: The torus
is computed by means of a function which is available in SageMath (and not in Kenzo),
whereas the sphere, the loop space, the wedge, and the computation of the homology
groups of the constructed simplicial object are carried out via Kenzo. As in the last example
of Section 4, the final object is of an infinite nature and then SageMath is not able to
determine its homology groups; the effective homology method is used in Kenzo.

Similarly, we can construct the joins of simplicial sets of an infinite nature and deter-
mine their homology and, when the result space is simply connected, homotopy groups.
For instance, we consider two Eilenberg–MacLane spaces.
sage: from s a g e . interfaces.kenzo import EilenbergMacLaneSpace
sage: E1 = EilenbergMacLaneSpace(ZZ, 2)
sage: E2 = EilenbergMacLaneSpace(ZZ, 3)
sage: E = E1.join(E2)
sage: [E.homology(i) for i in range (11)]
[Z, 0, 0, 0, 0, 0, Z, 0, Z x C2 , 0, Z x C2 x C3]
sage: [E.homotopy_group(i) for i in range(6, 9)]
[Multiplicative Abelian group isomorphic to Z,
Trivial Abelian group ,
Multiplicative Abelian group isomorphic to Z]

The smash product of two simplicial sets is another topological construction which
can be considered as a particular example of pushout. This construction was not included
in the external module [27], but we have used the general definition of pushout to develop
new Kenzo functions producing the construction of the smash product of two simplicial
sets and its effective homology, which makes it possible to determine its homology and
homotopy groups. Considering again the two Eilenberg–MacLane spaces of the previous
example, we obtain the following results.
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sage: E3 = E1.smash_product(E2)
sage: [E3.homology(i) for i in range (11)]
[Z, 0, 0, 0, 0, Z, 0, Z x C2 , 0, Z x C2 x C3, C2]
sage: [E3.homotopy_group(i) for i in range(5, 9)]
[Multiplicative Abelian group isomorphic to Z,
Trivial Abelian group ,
Multiplicative Abelian group isomorphic to Z,
Multiplicative Abelian group isomorphic to C2]

6.2. Spectral Sequences

As we have already said in Section 2, there exists a Kenzo module [19] for computing
spectral sequences, a tool of algebraic topology given by a family of “pages” of groups
{Er

p,q}r≥1,p∈Z,q∈Z and differential maps dr
p,q : Er

p,q → Er
p−r,p+r−1 ([28]). This module is able

to determine spectral sequences of filtered complexes of infinite type and, in particular
cases, it can compute Serre and Eilenberg–Moore spectral sequences of fibrations with
objects of infinite type when versions with effective homology are known for the initial
spaces. It can also compute the spectral sequence associated with a bicomplex (see [28] for
the definition of these spectral sequences). The module determines not only the groups,
but also the differential maps of every page of the spectral sequence.

We have integrated in SageMath the computation of the following spectral sequences:

• Spectral sequence of a bicomplex given by a list of morphisms of chain complexes;
• Serre spectral sequence associated with a cartesian product;
• Serre spectral sequence associated with the first fibration in the Whitehead tower of a

simplicial set;
• Eilenberg–Moore spectral sequence associated with the loop space of a simplicial set.

To this aim, again, we have adapted the code of [19] so that it is compatible with
ECL and have developed new functions in both Lisp and SageMath. In the four cases, the
result is an object of a new class KenzoSpectralSequence, for which we can obtain groups,
differential matrices, and tables showing the groups of a given level via suitable methods.
Moreover, we have defined a new SageMath class called KenzoChainComplexMorphism (see
Figure 1), which is used to construct the spectral sequence associated with a bicomplex as
we will explain later, and a method to translate a chain complex morphism from SageMath
to Kenzo.

First of all, we can compute spectral sequences associated with bicomplexes, a par-
ticular case of filtered complex from which many useful spectral sequences are defined.
A bicomplex (or double complex) C∗,∗ is a bigraded free Z-module C∗,∗ = {Cp,q}p,q∈Z
provided with morphisms d′p,q : Cp,q → Cp−1,q and d′′p,q : Cp,q → Cp,q−1 satisfying
d′p−1,q ◦ d′p,q = 0, d′′p,q−1 ◦ d′′p,q = 0, and d′p,q−1 ◦ d′′p,q + d′′p−1,q ◦ d′p,q = 0. We consider as
an example the bicomplex of Figure 2 where the differential maps d′1,1, d′2,0, and d′′1,1 are

given by the matrices D′1,1 =

(
2 0
0 2

)
, D′2,0 =

(
2 0

)
, and D′′1,1 =

(
1 0

)
.
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sage: [E3.homology(i) for i in range (11)]
[Z, 0, 0, 0, 0, Z, 0, Z x C2 , 0, Z x C2 x C3, C2]
sage: [E3.homotopy_group(i) for i in range(5, 9)]
[Multiplicative Abelian group isomorphic to Z,
Trivial Abelian group ,
Multiplicative Abelian group isomorphic to Z,
Multiplicative Abelian group isomorphic to C2]

6.2. Spectral Sequences

As we have already said in Section 2, there exists a Kenzo module [19] for computing
spectral sequences, a tool of algebraic topology given by a family of “pages” of groups
{Er

p,q}r≥1,p∈Z,q∈Z and differential maps dr
p,q : Er

p,q → Er
p−r,p+r−1 ([28]). This module is able

to determine spectral sequences of filtered complexes of infinite type and, as particular
cases, it can compute Serre and Eilenberg–Moore spectral sequences of fibrations with
objects of infinite type when versions with effective homology are known for the initial
spaces. It can also compute the spectral sequence associated with a bicomplex (see [28] for
the definition of these spectral sequences). The module determines not only the groups,
but also the differential maps of every page of the spectral sequence.

We have integrated in SageMath the computation of the following spectral sequences:

• Spectral sequence of a bicomplex given by a list of morphisms of chain complexes.
• Serre spectral sequence associated with a cartesian product.
• Serre spectral sequence associated with the first fibration in the Whitehead tower of a

simplicial set.
• Eilenberg–Moore spectral sequence associated with the loop space of a simplicial set.

To this aim, again, we have adapted the code of [19] so that it is compatible with ECL
and we have developed new functions in both Lisp and SageMath. In the four cases, the
result is an object of a new class KenzoSpectralSequence, for which we can obtain groups,
differential matrices and tables showing the groups of a given level via suitable methods.
Moreover, we have defined a new SageMath class called KenzoChainComplexMorphism (see
Figure 1), which is used to construct the spectral sequence associated with a bicomplex as
we will explain later, and a method to translate a chain complex morphism from SageMath
to Kenzo.

First of all, we can compute spectral sequences associated with bicomplexes, a
particular case of filtered complex from which many useful spectral sequences are de-
fined. A bicomplex (or double complex) C∗,∗ is a bigraded free Z-module C∗,∗ = {Cp,q}p,q∈Z
provided with morphisms d′p,q : Cp,q → Cp−1,q and d′′p,q : Cp,q → Cp,q−1 satisfying
d′p−1,q ◦ d′p,q = 0, d′′p,q−1 ◦ d′′p,q = 0, and d′p,q−1 ◦ d′′p,q + d′′p−1,q ◦ d′p,q = 0. We consider as
an example the bicomplex of Figure 2 where the differential maps d′1,1, d′2,0, and d′′1,1 are

given by the matrices D′1,1 =

(
2 0
0 2

)
, D′2,0 =

(
2 0

)
, and D′′1,1 =

(
1 0

)
.

Z Z⊕Z

Z⊕Z Z⊕Z

p

q

//

OO

d′2,0

oo

d′1,1

oo

d′′1,1
��

Figure 2. Example of bicomplex.
Figure 2. Example of bicomplex.
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The associated spectral sequence is represented in Figure 3, with differential maps

d1
1,1 : E1

1,1 = Z → E1
0,1 = Z⊕ Z given by the matrix

(
0
2

)
and d2

2,0 : E2
2,0 = Z⊕ Z →

E2
0,1 = Z/2Z⊕Z defined by

(
0 0
−4 0

)
.

0 Z⊕Z

Z⊕Z Z

p

q r=1

//

OO

d1
1,1oo

0 Z⊕Z

Z/2Z⊕Z 0

p

q r=2

//

OO

d2
2,0

jj

0 Z

Z/2Z⊕Z/4Z 0

p

q r=3
r=∞

//

OO

Figure 3. Spectral sequence of the bicomplex.

For the moment, we have made it possible to construct the spectral sequence of a
bicomplex in SageMath by means of a list of chain complex morphisms, where each chain
complex is a column of the bicomplex (with vertical differential maps) and horizontal
differentials are given by the morphisms (with the corresponding signs for vertical maps
such that the property of bicomplex is satisfied). Considering the example of Figure 2, we
construct the chain complexes corresponding to the three columns and then two chain
complex morphisms as follows:
sage: C1 = ChainComplex ({1: matrix(ZZ, 0, 2, [])},
degree_of_differential =-1)
sage: C2 = ChainComplex ({1: matrix(ZZ, 1, 2, [1, 0])},
degree_of_differential =-1)
sage: C3 = ChainComplex ({0: matrix(ZZ, 0,2 , [])},
degree_of_differential =-1)
sage: M1 = Hom(C2,C1)({1: matrix(ZZ, 2, 2, [2, 0, 0, 2])})
sage: M2 = Hom(C3,C2)({0: matrix(ZZ, 1, 2, [2, 0])})

Let us emphasize that all of them are objects built using SageMath functions. Then, we
use our new function BicomplexSpectralSequence, which produces an object of the class
KenzoSpectralSequence, and we determine some of the groups and differential maps. In
this class, the method group receives three parameters r, p, and q and computes the group
Er

p,q of the spectral sequence, in our examplex, E2
0,2 = Z/2Z⊕Z. The method table inputs

five integers: The page r and four indexes i1, i2, j1, and j2 corresponding to the first column,
last column, first row, and last row to print; in this case we show some groups of the page
E3. The method matrix computes the differential map dr

p,q as a matrix and as said before,

d2
2,0 is given by the matrix

(
0 0
−4 0

)
.

sage: from s a g e . interfaces.kenzo import Bi c o m p l e x SpectralSequence
sage: l = [M1 , M2]
sage: E = Bi c o m p l e x SpectralSequence(l)
sage: E.group (2,0,1)
Additive abelian group isomorphic to Z/2 + Z
sage: E.table (3,0,2,0,2)

0 0 0
Z/2 + Z/4 0 0
0 0 Z
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sage: E.matrix (2,2,0)
[0 0]
[-4 0]

It would also be possible to define a class Bicomplex (which does not exist either
in SageMath or Kenzo), providing methods for obtaining the bigraded list of generators,
vertical and horizontal differentials, and the associated total chain complex.

Another type of spectral sequence that we have integrated in SageMath is the Serre
spectral sequence [29], which provides information on the homology groups of the total
space of a fibration from the homologies of the base and the fiber. A particular case is
obtained for trivial fibrations, which correspond to cartesian products of two simplicial
sets. Let us consider for example the cartesian product of two spheres, S2 × S3. As it is well
known, the page E2 of the Serre spectral sequence is given by E2

p,q = Hp(S3, Hq(S2)) and all
differential maps are null (since the fibration is trivial). In the following lines, we compute
for instance E2

3,0 = Z, we show some of the groups of the page E2, and we determine the
differential map d3

3,0 which as expected is the null morphism.

sage: from s a g e . interfaces.kenzo import Sphere
sage: S2 = Sphere (2)
sage: S3 = Sphere (3)
sage: P = S3.cartesian_product(S2)
sage: E = P.serre_spectral_sequence ()
sage: E.group (2,3,0)
Additive abelian group isomorphic to Z
sage: E.table(2, 0, 3, 0, 2)
Z 0 0 Z
0 0 0 0
Z 0 0 Z
sage: E.matrix (3,3,0)
[0]

Let us consider now the Serre spectral sequence of the Whitehead tower of the sphere
S3, which corresponds to a (non-trivial) fibration K(Z, 2) → X → S3. In this case, it
is known that the E2 page is given by E2

p,q = Hp(S3, Hq(K(Z, 2))) and some non null
differential maps can happen. In the following lines, we show the computation of the page
E2 and some differentials. We can observe that d3

3,0 : E3
3,0 → E3

0,2 is an isomorphism and
d3

3,2 : E3
3,2 → E3

0,4 is the multiplication by 2.

sage: from s a g e . interfaces.kenzo import Sphere
sage: S3 = Sphere (3)
sage: E = S3.sw_spectral_sequence ()
sage: E.table(2, 0, 3, 0, 4)
Z 0 0 Z
0 0 0 0
Z 0 0 Z
0 0 0 0
Z 0 0 Z
sage: E.matrix (3,3,0)
[1]
sage: E.matrix (3,3,2)
[2]

Another classical example of spectral sequence is the Eilenberg–Moore spectral
sequence [30], which is also associated with fibrations, and in particular the one re-
lated with the loop space of a simplicial set which is implemented in the Kenzo mod-
ule [19] and has been also integrated in SageMath. This is a second quadrant spectral
sequence, which means that the groups Er

p,q which are different from zero satisfy p ≤ 0
and q ≥ 0. Let us consider as an example the computation of the Eilenberg–Moore
spectral sequence of the sphere S3, where we can find for instance a differential map
d1
−2,8 : E1

−2,8 = Z⊕Z⊕Z→ E1
−3,8 = Z⊕Z⊕Z.
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sage: from s a g e . interfaces.kenzo import Sphere
sage: S3 = Sphere (3)
sage: L = S3.loop_space ()
sage: EMS = L.em_spectral_sequence ()
sage: EMS.table(1, -5, -2, 5, 8)
0 Z Z + Z + Z Z + Z + Z
0 0 0 0
0 0 Z Z + Z
0 0 0 0
sage: EMS.matrix(1, -2 ,8)
[ 3 -2 0]
[ 3 0 -3]
[ 0 2 -3]

6.3. Finite Topological Spaces

A finite topological space (or simply a finite space) is a topological space with finitely
many points. Finite spaces and finite preordered sets are basically the same objects con-
sidered from different perspectives [31] (moreover, finite T0-spaces correspond to finite
partially ordered sets or posets). This result allows us to study finite spaces by combining
algebraic topology with the combinatorics arising from their intrinsic preorder structures.

The study of homotopical invariants can be restricted to the class of finite T0-spaces,
since any finite topological space is known to be homotopy equivalent to a finite T0-
space [32]. Given a finite T0-space, the incidence matrix corresponding to the order relation
of its associated poset and the adjacency matrix of the Hasse diagram are called the
topogenous matrix and Stong matrix of the space, respectively.

An external module of the Kenzo system has been recently developed in order to
represent and compute some topological invariants of finite topological spaces [33]. Since
many of the algorithms are based on manipulations of the topogenous and Stong matrices,
finite spaces are represented in Kenzo as instances of the class FINITE-SPACE by using
the slots top (the topogenous matrix), stong (the Stong matrix), and heights (a list of the
elements of the space separated by heights). An instance of FINITE-SPACE can be defined
by just declaring either the top slot or the stong slot, but it is preferable to keep both in
order to facilitate the computations. For example, we can construct a finite T0-space by
specifying the edges of the Hasse diagram of its associated poset and constructing the
respective Stong matrix:

> (setf edges (make-array 19 :initial-contents ’(() () () ()
(1 2) (1 2) (2 3) (2 4) (2 3) (2 4) (3 4) (3 4) (5 6) (5 6 7)
(5 6 7 8) (7 8 11) (8 9 12) (9 10 11) (7 10 12))))
> (setf finite-space (build-finite-space

:stong (edges-to-stong-mtrx edges)
:orgn ’(example )))

[K1 Finite-Space]
In a particular case, when a finite T0-space is h-regular, some algorithms to compute

its homology have been developed in [33], where the use of discrete vector fields has been
also considered in order to deal with smaller chain complexes when computing homology
groups. Regarding finite-space (the space we have constructed above), we can prove
that such a space is h-regular, and then we can compute its homology in Kenzo:

> (h-regular-homology finite-space 0)
Component Z
> (h-regular-homology finite-space 1)
Component Z/2Z
> (h-regular-homology finite-space 2)
Component Z
Component Z
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Despite the capabilities of Kenzo to compute topological invariants, it lacks a graphical
interface, as mentioned before. Moreover, finite T0-spaces can be represented by their
associated posets and since the class FinitePoset [34] in SageMath is devoted to posets,
we have decided to integrate in SageMath the external Kenzo module dealing with finite
spaces. By means of this integration, we can use the methods and functions implemented
in the class FinitePoset, which in particular allows us to visualize the Hasse diagrams
of the posets associated to finite T0-spaces by using graphic objects in SageMath and we
enhanced SageMath with a new mathematical object, expanding the scope of this system.

In order to deal with finite spaces in SageMath, we have created a module implement-
ing finite topological spaces and related concepts. The class FiniteTopologicalSpace
has been created by taking as input the parameters elements (the list of elements of the
finite space), minimal_basis (a dictionary where the keys are the points n in elements
and minimal_basis[n] is the set of points in the minimal open set containing n), and
topogenous (the topogenous matrix of the finite space induced by the order given in
elements). Bearing in mind the importance of finite T0-spaces in the computation of
invariants, we have created the subclass FiniteTopologicalSpace_T0, inheriting all the
attributes above mentioned and, additionally, the parameter poset, a FinitePoset repre-
senting the poset corresponding to the finite T0-space.

The function FiniteSpace has been implemented to create a finite space in SageMath
by using different types of data. For example, by specifying a dictionary representing a
minimal basis, we can construct a finite space:
sage: from s a g e . homology.finite_topological_spaces

import FiniteSpace
sage: minimal_basis = {5: {4, 5}, 4: {4}, 2: {2}, 6: {2, 4, 6},

1: {1, 2, 4}, 3: {1, 2, 4, 3}}
sage: M = FiniteSpace(minimal_basis)

We have implemented functions to compute some topological properties. For instance,
the module provides functions to determine if a point is interior, exterior, boundary, limit,
closure, or isolated with respect to a given subspace. Moreover, for a given subspace, the
corresponding interior, exterior, boundary, derived, closure, or isolated set can be computed.
Regarding point reductions techniques, identification of beat points and weak points [35]
have been also implemented in order to compute, for example, cores (the smallest strong
deformation retracts [32]) of a finite T0-space:
sage: M.core()
Finite T0 topological space of 4 points with minimal basis
{2: {2}, 3: {2, 4, 3}, 4: {4}, 6: {2, 4, 6}}

The point reduction techniques referred to above have been implemented by using
the corresponding functionalities in Kenzo as well as the computation of discrete vector
fields and homology of h-regular finite T0-spaces:
sage: covers = [[9, 13], [7, 13], [4, 13], [8, 12], [7, 12], [5, 12],

[9, 11], [6, 11], [5, 11], [8, 10], [6, 10], [4, 10],
[3, 9], [2, 9], [3, 8], [2, 8], [3, 7], [1, 7],
[3, 6], [1, 6], [2, 5], [1, 5], [2, 4], [1, 4]]

sage: P = Poset ((list(range (1,14)), covers), cover_relations = True)
sage: X = FiniteSpace(P)
sage: dvf = X.discrete_vector_field ()
sage: X.hregular_homology(dvfield = dvf)
{0: Z, 1: C2 , 2: 0}

The development of this integration is part of the tickets #30400, #30447, and #30862
in the SageMath Trac, which are currently under review by SageMath developers.

7. Conclusions and Further Work

In this paper we presented an interface between the computer algebra systems Sage-
Math and Kenzo, together with an optional Kenzo package for SageMath. Our work has
made it possible to work with Kenzo in a friendlier way and has allowed both systems
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to collaborate in some computations which cannot be done independently in any of the
programs. In addition, we enhanced SageMath with new functionalities in algebraic topol-
ogy, allowing the representation and computation of topological invariants of spaces of
an infinite nature; such type of spaces were not available in the system before. We have
also integrated the first implemented algorithm to compute homotopy groups of not 1-
reduced simplicial sets. This led us to compute homotopy groups that have never been
determined before.

The first prototype of our interface and the Kenzo package, presented in [13], are
already available from version 8.7 of SageMath and include some basic functionalities of
algebraic topology computations. The new version, which has recently been accepted by
SageMath developers and is available from SageMath 9.2, integrates some Kenzo external
modules (which led us to find several bugs on one of them which have been fixed) and
adds new functionalities and computations: Joins of two simplicial sets, wedges of spaces
of infinite nature, smash products, homotopy groups, spectral sequences, and connection
between chain complexes, simplicial sets, and morphisms of chain complexes. We also
provide new computation capabilities about invariants of finite topological spaces; this
part of the work is currently under review by the SageMath developers to be included in
future releases.

The optional Kenzo package for SageMath and the interface to communicate both
systems possess many interesting features:

• The package permits an easy installation of Kenzo and incorporates some of the
external modules for Kenzo that are scattered in the personal websites of different
authors. This has required the authors to update, adapt, polish, and correct flaws in
the external code, since some of them were developed for outdated versions of the
Kenzo system;

• They spread Kenzo to a broad community by including it in SageMath. The interface
also eases the use of Kenzo for users with no previous knowledge of functional
programming, since the interface is transparent: The user does not notice that Kenzo
is running withing SageMath and the computations are carried out in Kenzo via
SageMath commands. No knowledge on functional programming is required;

• Jupyter notebooks can be used as a friendly graphical user interface. Even more, it is
possible to use SageMath with our Kenzo interface online with no software installation
required;

• The interface is efficient due to the use of a C-library interface, roughly equivalent to
Kenzo in time and space efficiency;

• They are extensible: New modules and features can be added to both the package and
the interface;

• It is an open-source software: Any user can explore and adapt the code.

As possible further work, there exist other algebraic topology constructions which are
implemented as additional modules in Kenzo and are not available in SageMath, such as
discrete vector fields, generalized spectral sequences, or homology of group extensions. As
done for the external modules presented in this paper, the integration of these constructions
in SageMath requires one to adapt the Kenzo Common Lisp code to the Embeddable Com-
mon Lisp library in SageMath and to develop the corresponding wrappers and necessary
functions in both Lisp and SageMath. Furthermore, other types of spectral sequences
available in Kenzo could be integrated in SageMath and to do so, we plan to define in
SageMath the notions of filtered complex and fibration (already available in Kenzo). To
implement these notions as generally as possible, functional programming and lambda
functions in SageMath will be necessary. Finally, following this idea of taking advantage of
integrating several software packages, we would like to improve Kenzo by using libraries
such as FLINT [36], which could be used for algebraic computations with matrices over
rings necessary for homological computations.
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