27 research outputs found

    Electrochemically active water repelling perfluorinated polyaniline films

    Get PDF
    Water repelling, perfluorinated, polyanilines and their composites with multi-wall carbon nanotubes are synthesized using interfacial polymerization in either flake-like or fibrillar shapes. This class of polyanilines exhibits electrochemical activity, capacitive behaviour, and a contact angle of 119–125° with water. The addition of multi-wall carbon nanotubes facilitates the control of the polymer morphology and increases the specific capacitance of the material. We obtained microfibers or flake-like morphologies depending on the amount of multiwall carbon nanotubes added in the organic phase and through cyclic voltammetry, impedance spectroscopy and galvanostatic charge-discharge, we evaluated the effect of the backbone geometry and the addition of nanotubes on the electrochemical properties of the composites and the pristine polymers. The capacitance of the linear 3-perfluoroctyl polyaniline is consistently better than the cross-linked 4-perfluoroctyl polyaniline, where the para position relative to the amine group is blocked by fluorocarbon chains

    Aqueous electrosynthesis of an electrochromic material based water-soluble EDOT-MeNH2 hydrochloride

    Get PDF
    2\u27-Aminomethyl-3,4-ethylenedioxythiophene (EDOT-MeNH2) showed unsatisfactory results when its polymerization occurred in organic solvent in our previous report. Therefore, a water-soluble EDOT derivative was designed by using hydrochloric modified EDOT-MeNH2 (EDOT-MeNH2·HCl) and electropolymerized in aqueous solution to form the corresponding polymer with excellent electrochromic properties. Moreover, the polymer was systematically explored, including electrochemical, optical properties and structure characterization. Cyclic voltammetry showed low oxidation potential of EDOT-MeNH2·HCl (0.85 V) in aqueous solution, leading to the facile electrodeposition of uniform the polymer film with outstanding electroactivity. Compared with poly(2′-aminomethyl- 3,4-ethylenedioxythiophene) (PEDOT-MeNH2), poly(2′-aminomethyl-3,4-ethylenedioxythiophene salt) (PEDOT-MeNH3 +A-) revealed higher efficiencies (156 cm2 C-1), lower bandgap (1.68 eV), and faster response time (1.4 s). Satisfactory results implied that salinization can not only change the polymerization system, but also adjust the optical absorption, thereby increase the electrochromic properties

    Raman spectroscopy of conductive polymers

    No full text
    Department of Macromolecular PhysicsKatedra makromolekulární fyzikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Using of Raman microscope for study of molecular structure

    No full text
    Katedra makromolekulární fyzikyDepartment of Macromolecular PhysicsFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Mobbing ve zdravotnické organizaci

    No full text
    Katedra řízení a supervize v sociálních a zdravotnických organizacíchFakulta humanitních studi
    corecore