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Aqueous electrosynthesis of an electrochromic material based water-
soluble EDOT-MeNH2 hydrochloride

Abstract
2'-Aminomethyl-3,4-ethylenedioxythiophene (EDOT-MeNH2) showed unsatisfactory results when its
polymerization occurred in organic solvent in our previous report. Therefore, a water-soluble EDOT
derivative was designed by using hydrochloric modified EDOT-MeNH2 (EDOT-MeNH2·HCl) and
electropolymerized in aqueous solution to form the corresponding polymer with excellent electrochromic
properties. Moreover, the polymer was systematically explored, including electrochemical, optical properties
and structure characterization. Cyclic voltammetry showed low oxidation potential of EDOT-MeNH2·HCl
(0.85 V) in aqueous solution, leading to the facile electrodeposition of uniform the polymer film with
outstanding electroactivity. Compared with poly(2′-aminomethyl- 3,4-ethylenedioxythiophene) (PEDOT-
MeNH2), poly(2′-aminomethyl-3,4-ethylenedioxythiophene salt) (PEDOT-MeNH3 +A-) revealed higher
efficiencies (156 cm2 C-1), lower bandgap (1.68 eV), and faster response time (1.4 s). Satisfactory results
implied that salinization can not only change the polymerization system, but also adjust the optical
absorption, thereby increase the electrochromic properties.
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ABSTRACT: 2’-Aminomethyl-3,4-ethylenedioxythiophene (EDOT-MeNH2) showed 

unsatisfactory results when its polymerization occurred in both organic solvent and 

aqueous solution published in our previous work. Therefore, a novel water-soluble EDOT 

derivative was designed by using hydrochloric modified EDOT-MeNH2 (EDOT-

MeNH2•HCl) and electropolymerized in aqueous solution to form the corresponding 

polymer with excellent electrochromic properties. Moreover, the polymer was 

systematically explored, including electrochemical and optical properties, structure 

characterization, thermal stability and morphology. Cyclic voltammetry showed low 

oxidation potential of EDOT-MeNH2•HCl (0.85 V) in aqueous solution, leading to the 

facile electrodeposition of uniform the polymer film with outstanding electroactivity. 

Compared with poly(2’-aminomethyl- 3,4-ethylenedioxythiophene) (PEDOT-MeNH2), 

poly(2’-aminomethyl -3,4-ethylenedioxythiophene hydrochloride) (PEDOT-MeNH2•HCl) 

revealed higher efficiencies （156 cm2 C-1） , lower bandgap (1.68 eV), and faster 
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response time (1.4 s). Satisfactory results implied that salinization can not only change 

the polymerization system, but also adjust the optical absorption, thereby increase the 

electrochromic properties. 

Keywords: Conducting polymer; aqueous solution; electrochemical polymerization; 

PEDOT derivative; electrochromic 

1. Introduction 

  Electrochromism can be defined as the reversible change in optical properties of a 

material resulting from electrochemically induced redox states [1, 2]. A wide variety of 

electrochromic materials are presently known, ranging from metal oxides and mixed-

valence metal complexes to organic molecules and conjugated polymers [3]. In recent 

years, conjugated polymers have gained a lot of attention due to their several advantages 

over other types of electrochromes, such as low cost, processability, high optical contrast 

ratio, multi-colors with the same material, high stability and long cycle life with fast 

response time [4, 5]. 

  Among numerous conducting polymers candidates, many electrochromic devices based 

on poly(3,4-ethylenedioxythiophene) (PEDOT) and its composite have been developed 

due to innovative polymeric backbone possessing electron-rich nature and inhibiting α,β- 

and β,β- cross-links on polymerization, easy processability (PEDOT:PSS), reversible 

switching between two redox states, and high chemical stability [6-9]. For further 

improving electrochromic performance of PEDOT and its derivatives, researches 

therefore designed a series of strategies including modify the structure through 

introducing substituents, constructing network film through secondary polymerization, 

changing the polymeric solvent−electrolyte systems and something like that [10-13]. For 
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example, Reynolds’s [14-16] and Havinga’s [17] groups have reported the first neutral-

state solution contained PEDOT derivatives, which were obtained by the method of 

introduction of solubilizing side chains to the ethylenedioxy bridge of PEDOT. 

  Significantly, electropolymerization system plays an important role in polymerization of 

3,4-ethylenedioxythiophene (EDOT) and its derivatives [18, 19]. It's worth noting that 

most electropolymerization systems are limited to organic solvents [11, 20-24], which 

exhibit some shortcomings such as environmental pollution, insecurity, energy shortage 

etc. Aqueous solution, as a promising “green” alternative solvent medium to traditional 

volatile and toxic solvents, is beneficial from a cost, handling, environmentally friendly, 

and safety point of view. Aqueous solution has been not only used as basic solvent 

system in the field of biosensor since water is the ideal media for biosystems [25, 26], but 

also plays active roles in lithium ion batteries with the advantages of low cost, easy 

performance, and intrinsic safety [27, 28]. However, there are relatively few researches 

on electrosynthesis and application of polymers in aqueous solution. The key to realize 

the aim of polymerization in aqueous medium is to increase the water solubility of the 

precursors. 

  Salinization, as a simple method for modification, can increase the water solubility of 

the precursors as well as change the electron density of the conjugated structure, and 

thereby change the polymerization conditions and photoelectric properties. Reynolds et al. 

prepared the electrochromic properties of films obtained from the water-soluble poly(4-

(2,3-dihydrothieno [3,4-b]-[1,4]dioxin-2-yl-methoxy) -1-butanesulfonic acid, sodium salt) 

(PEDOT-S) and poly(allylamine hydrochloride) [29, 30] in aqueous solution. This 

method modified PEDOT with salt group provided a simple means of displaying fast 



4 

 

switching time and high coloration efficiency and had been found effective in 

electrochromic devices [31].  

  Recently, we also developed a typical EDOT derivative as promising electrochromic 

material, aminomethyl functionalized EDOT (EDOT-MeNH2) [32, 33]. However, the 

electrosynthesis of poly(2’-aminomethyl-3,4-ethylenedioxythiophene) (PEDOT-MeNH2) 

was not ideal in traditional organic solvent system (dichloromethane) unless adding 

boron trifluoride diethyl etherate, which is water-sensitive and results in the decrease of 

the polymer quality easily during the process of electrochemical polymerization. 

  Considering the special property on forming salt easily of amino group, our ongoing 

interest in PEDOT-MeNH2 prompted us to improve its polymerization system and 

electrochromic properties by designing EDOT-MeNH2 into the form of hydrochloride. 

Moreover, the electrochemical polymerization of 2’-aminomethyl- 3,4-

ethylenedioxythiophene hydrochloride (EDOT-MeNH2•HCl) in aqueous solution was 

studied systematically and high-quality poly(2’-aminomethyl-3,4- 

ethylenedioxythiophene hydrochloride) (PEDOT-MeNH2•HCl) film was easily obtained. 

Furthermore, the electrochemical behavior, structural characterization, thermal stability, 

morphology, spectroelectrochemistry, and electrochromic performance of the as-prepared 

PEDOT-MeNH2•HCl were also explored. 

2. Experimental 

2.1. Chemicals 

2’-Aminomethyl-3,4-ethylenedioxythiophene (EDOT-MeNH2) was synthesized as 

previously described [32]. Dichloromethane (CH2Cl2, AR) was purchased from Tianjin 

Damao Chemical Reagent Factory. Methanol (CH3OH, AR), acetone (CH3COCH3, AR) 
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and dimethyl sulfoxide (DMSO, AR) were purchased from Tianjin Bodi Chemicals Co. 

Ltd. Concentrated hydrochloric acid (HCl, 98%, Xilong Chemical) was used as received. 

Perchloric acid (HClO4, AR) was purchased from Tianjin Eastern Chemical Works and 

used as received. Doubly distilled water was used throughout the work. 

2.2. Synthesis of 2’-aminomethyl-3,4-ethylenedioxythiophene hydrochloride (EDOT-

MeNH2•HCl) [34] 

As shown in Scheme 1, EDOT-MeNH2 (0.12 g, 0.70 mmol) was dissolved in 

H2O/CH3OH/CH3COCH3=1:5:10 mixture (6 mL). Then, 66 µL concentrated 

hydrochloric acid was added, and the mixture was refluxed for 24 h. After reaction, the 

aqueous phase was extracted with CH2Cl2 (3 × 6 mL) and the combined organic layers 

were discarded. After evaporation of the inorganic phase, the remaining clear crystal 

(0.133 g, yield 88.7%) was obtained. 1H NMR (400 MHz, DMSO-d6, ppm): δ 8.44 (s, 

3H), 6.74 (s, 2H), 4.09-4.56 (m, 3H), 3.09-3.30 (m, 2H). 

2.3. Electrochemical polymerization 

  All electrochemical tests and polymerizations were performed in a one-compartment 

cell with a model 263A potentiostat/galvanostat (EG&G Princeton Applied Research) 

under computer control. For electrochemical examinations, the working and counter 

electrodes were typically both Pt wires of 1 mm diameter. They were placed 5 mm apart 

during the tests. To obtain a sufficient amount of the polymer films for characterization, a 

Pt sheet or an ITO-coated glass with a surface area of 3 cm2 was employed as the 

working electrode, and another Pt sheet (3 cm × 2 cm) was used as the counter electrode. 

These electrodes were carefully polished with 1500 mesh abrasive paper (for ITO, they 

were immersed in ethanol for 6 h and then cleaned by ultrasonic wave for 15 min), 
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cleaned successively by water and acetone, and dried in air before each experiment. An 

Ag/AgCl electrode directly immersed in the solution served as the reference electrode, 

and it revealed sufficient stability during the experiments. The typical electrolytic 

solution was H2O-HClO4 (1.0 M) containing 0.01 M monomer. All solutions were 

deaerated by a dry nitrogen stream (more than 20 min) and maintained under a slight 

overpressure throughout the experiments to avoid the effect of oxygen. 

  The polymer film was grown potentiostatically at optimized potentials higher than the 

onset oxidation potentials in H2O-HClO4 (1.0 M). Its thickness was controlled by the 

total charge passed through the cell, which was read directly from the current-time (I-t) 

curves by computer. After polymerization, the polymer film was washed repeatedly with 

H2O in order to remove the electrolyte and oligomers. Finally, the polymer was dried at 

60 °C under vacuum for 24 h. 

2.4. Characterization 

  The 1H NMR spectra were recorded on a Bruker AV 400 NMR spectrometer with d6-

DMSO as the solvent and tetramethylsilane as an internal standard (TMS, singlet, 

chemical shift: 0.0 ppm). Electrochemical, spectroelectrochemical and kinetic studies 

were carried out on a Model 263 potentiostat-galvanostat (EG&G Princeton Applied 

Research) and a Perkin-Elmer Lambda 900 Ultraviolet-visible Near-Infrared 

spectrophotometer under computer control. Infrared spectra were measured by a Bruker 

Vertex 70 Fourier-transform infrared (FT-IR) spectrometer with samples in KBr pellets. 

Scanning electron microscopy (SEM) measurements were taken with a VEGA\\LSU 

scanning electron microscope (Tescan). Thermogravimetric (TG) analysis and 

differential thermogravimetric (DTG) analysis were performed with a Pyris Diamond 
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TG/DTA thermal analyzer (PerkinElmer) under a nitrogen stream form 290 to 900 K 

with a heating rate of 10 K min−1. 

  Spectroelectrochemical measurements were carried out to investigate the absorption 

spectra of the polymer films under an applied potential. The spectroelectrochemical cell 

consists of a quartz cell, an Ag/AgCl wire (RE), a Pt wire (CE), and an ITO/glass as the 

transparent working electrode (WE). All measurements were carried out in monomer-free 

H2O-HClO4 (1.0 M). The quartz cell filled with monomer-free H2O-HClO4 (1.0 M) and 

ITO-coated glass without a deposited film were used as the background for 

spectroelectrochemical measurements. 

  The change in optical density (ΔOD) at a specific wavelength (λmax) is determined by 

the %T values of electrochemically oxidized and neutral films using equation (1) [35]: 

ΔOD = log(Tox/Tred)                 (1) 

  The coloration efficiency (CE) is defined as the relation between the injected/ejected 

charge as a function of electrode area (Qd) and the change in optical density (ΔOD) at a 

specific dominant wavelength (λmax), as illustrated by equation (2) [36]: 

CE = ΔOD/Qd                       (2) 

3. Results and discussion  

3.1. Electrochemical polymerization of EDOT-MeNH2•HCl 

  The electropolymerization performance of EDOT-MeNH2•HCl (0.01 M) was examined 

via cyclic voltammetry (CV) in H2O-HClO4 (1.0 M) system. The onset oxidation 

potential (Eonset) of EDOT-MeNH2•HCl was found to be 0.85 V as can be seen from the 

inset of Fig. 1, which confirmed the monomer was easily oxidized in water system. By 

the force of contrast, the value was lower than that of EDOT-MeNH2 in CH2Cl2-Bu4NPF6 
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but a litter higher than that in CH2Cl2-Bu4NPF6 (0.1 M) system containing 2% boron 

trifluoride diethyl etherate [33]. 

  Fig. 1 showed the cyclic voltammograms (CVs) corresponding to the potentiodynamic 

electropolymerization of EDOT-MeNH2•HCl. On the first scan, the formation of the 

current loop over Eonset was characteristic for the nucleation process. Also, the increase of 

anodic and cathodic peak current densities in the CVs implied an increasing amount of 

polymer film on the electrode surface. Visual inspection during CV experiments revealed 

the formation of compact and homogeneous polymer films on the electrode surface. The 

behaviors demonstrated EDOT-MeNH2•HCl could be electropolymerized to form the 

electroactive polymer in water system. The broad redox waves of the polymer may be 

ascribed to the wide distribution of polymer chain length or the conversion of conductive 

species on the polymer main chain from a neutral to a metallic state [37]. The potential 

shift of current density peaks provided information about the increase in the electrical 

resistance of the polymer film and the overpotential needed to overcome this resistance, 

which is characteristic of conducting polymers during potentiodynamic polymerization. 

  Potentiostatic electrolysis was employed to prepare PEDOT-MeNH2•HCl film for 

characterization. To optimize the applied potential for polymerization, a set of current 

transients during the electropolymerization at different applied potentials were recorded. 

Considering the overall factors affecting the quality of the as formed polymer films, such 

as moderate polymerization rate, negligible overoxidation, regular morphology, and good 

adherence against the working electrode, the selected applied potential were 1.00 V for 

the electropolymerization of EDOT-MeNH2•HCl. 

3.2. Structural characterization 
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  FT-IR spectra can provide much structural information for newly-obtained polymers. A 

comparison of the evolution of vibrational modes appearing in polymers and in some 

simpler related molecules acting as references usually facilitates the interpretation of their 

experimental absorption spectra. FT-IR spectra of the monomer and its corresponding 

polymer were recorded to elucidate their structure and interpret the polymerization 

mechanism (Fig. 2). As can be seen, the absorption bands in the spectrum of the dedoped 

polymer were obviously broadened in comparison with those of monomer. This was not 

only attributable to the wide conjugated chain length distribution of the polymer but also 

the chemical defects on the polymer chain resulting from the over oxidation of the 

polymer [38]. 

  The details of the band assignments of monomer and dedoped polymer were given in 

Table 1. The peak at 3005 cm-1 for EDOT-MeNH2•HCl (Fig. 2a) was produced by C-H 

vibration of 2,5-positions in the thiophene ring. This peak was retained in the monomer 

(Fig. 2a) but disappeared in the electrochemical polymerized sample (Fig. 2b). This 

indicated that the electropolymerization mainly occurred at the 2,5-positions of the 

thiophene ring. From Fig. 2 and Table 1, the –NH3
+ in-plane vibration existed in the 

spectra of monomer (3437 cm-1) and polymer (3475 cm-1), indicating that –NH3
+ was not 

destroyed during electrochemical polymerization. In the case of PEDOT-MeNH2•HCl, 

the peaks at 1512 cm-1 could be assigned to C=C stretching vibration. Further, the 

vibration at 1325 cm-1 is ascribed to the stretching mode of single C-C bond. The 

vibration mode from the C-S bond in the thiophene ring can be found at 937 cm-1. For the 

ethyleneoxythia group, the absorption peaks originated from the CH2 symmetric and 

asymmetric stretching vibrations could be observed at 2895 cm-1. In addition, the peak at 
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1201 cm-1 demonstrated the C-O-C vibration in the ethyleneoxythia ring. All results 

confirmed that the structure of EDOT-MeNH2•HCl was not destroyed during the 

electrochemical polymerization process. 

3.3. Surface morphology 

  Scanning electron microscopy (SEM) has been one of the most widely used techniques 

in the study of the morphology of polymeric materials for analyzing their constituents 

and texture. Besides, the surface microscopy of conducting polymers is closely related to 

their properties, such as electrical conductivity, redox activity and stability, etc. Therefore, 

the surface of the doped and dedoped polymer films deposited electrochemically on the 

ITO electrodes was observed by SEM (Fig. 3). Microscopically, even at high 

magnifications, the surface of the doped PEDOT-MeNH2•HCl films (Fig. 3A) obtained 

from H2O-HClO4 (1.0 M) solution was rather smooth, homogeneous, and continuous 

with few defects. The morphology of compact polymer films may improve their electrical 

conductivity and electron transfer capability; it also made them good candidates for 

applications in ion-selective electrodes, ion-sieving films, matrices for hosting catalyst 

particles, etc [39, 40]. After dedoping at a negative constant applied potential (-0.4 V), 

the main morphology of PEDOT-MeNH2•HCl became rougher and less uniform (Fig. 

3B). These differences between the doped and dedoped polymer films were mainly due to 

the migration of counter anions out of the polymer films and their gradual solubility from 

the electrode to the solution during the dedoping processes [41], which broke the 

relatively smooth surfaces of doped polymer films. 

3.4. Thermal analysis 



11 

 

  The thermal stability of conducting polymers is very important for their potential 

applications. Thermogravimetric (TG) analysis is a significant dynamic way of detecting 

the degradation behaviors. To investigate the thermal stability of the new polymer, TG 

analytical experiment of PEDOT-MeNH2•HCl polymer was performed under a nitrogen 

stream at the heating rate of 10 K min-1. As shown in Fig. 4, it could be clearly observed 

that there were three-step weight losses for the polymer. The polymer initially underwent 

a small weight decrease (about 4.76%) at relatively low temperature (from 284 to 348 K), 

which may be attributed to moisture evaporation and a few monomers trapped in the 

polymer. With the gradual increasing of the temperature, a prominent weight loss step 

(about 52.66%) was clearly found at 348 K < T < 565 K, which were essentially due to 

the oxidizing decomposition of the skeletal PEDOT-MeNH2•HCl backbone chain 

structures. Simultaneously, the DTG curve showed that the corresponding maximal 

decomposition occurred at 507 K. Such an onset temperature of degradation was lower 

compared to those reported PEDOT-MeNH2 and PEDOT in our previous reports [33, 42]. 

Such a weight loss was closely related to the overflow of some oligomers or with short 

chain structure. Secondarily, the degradation between 565 and 877 K amounting to 

18.69% was probably caused by the oxidizing decomposition of the skeletal PEDOT-

MeNH2•HCl backbone chain structure. In addition, when the temperature reached 877 K, 

as-formed PEDOT-MeNH2•HCl polymer lost about 76.11% of its weight. 

3.5. Electrochemistry properties of the polymer 

  The electrochemical behaviour of the polymer-modified Pt electrode was studied by CV 

in monomer-free H2O-HClO4 (1.0 M) solution to test their electroactivity and stability. 

The steady-state CVs of PEDOT-MeNH2•HCl represented broad anodic and cathodic 
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peaks whose peak current densities are both proportional to the scan rates (Fig. 5), 

indicating that the redox process was non-diffusional and the electroactive material was 

well adhered to the working electrode surface. Furthermore, CVs of the polymer in 

monomer-free H2O-HClO4 (1.0 M) solution (Fig. 5) demonstrated an obvious hysteresis, 

i.e., there was an obvious difference between the anodic and cathodic peak potentials [43, 

44]. The potential shift of redox peaks among CV curves for conducting polymers is 

hardly explained by conventional kinetic limitations such as ion diffusion or interfacial 

charge transfer processes. The main reasons that account for this phenomenon are usually 

as follows: slow heterogeneous electron transfer, local rearrangement of polymer chains, 

slow mutual transformation of various electronic species, and electronic charging of 

interfacial exchange corresponding to the metal/polymer and polymer/solution interfaces 

[43]. 

  It is well known that the stability of conducting polymers is critical for their application 

in electronic devices [45, 46]. For that reason, the long-term stability upon cycling of 

these polymer films deposited on the Pt electrode was investigated by potential scanning 

between neutral and oxidized states in monomer-free H2O-HClO4 (1.0 M) solution (Fig. 

6). The number of scanning cycles was 2000 between -0.40 and 0.75 V at the potential 

scan rate of 150 mV s-1. From Fig. 6, PEDOT-MeNH2•HCl films could be cycled 

repeatedly between the conducting (oxidized) and insulating (neutral) states without 

significant decomposition. After completion of 1000 cycles, PEDOT-MeNH2•HCl was 

remaining 80.57%. Even after 2000 cycles, the stability of PEDOT-MeNH2•HCl still 

exhibited about 73.37% of its original electroactivity. It displayed even better stability 
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than PEDOT-MeNH2 (50.43% after 2000 cycles) [33], which indicates that salinization 

might be beneficial to the stability of conducting polymer. 

3.6. Spectroelectrochemistry 

  For application in devices and high-performance displays, the spectroelectrochemical 

properties of the polymers should be manifested by changes in the optical absorption 

spectra under voltage pulses. Therefore, UV-vis spectra of the polymer electrodeposited 

on ITO-coated glass slides via potential cycling between -0.5 V and 0.8 V were recorded 

in situ in monomer-free H2O-HClO4 (1.0 M) solution after neutralization (Fig. 7). 

  In the neutral form, the film exhibited strong absorption at the wavelength around 603 

nm, and the absorption of the as-formed polymer tailed off to 720 nm. The absorption in 

visible region led to a amaranth coloration. Compared with that of PEDOT-MeNH2 (the 

absorption peak around 582 nm), PEDOT-MeNH2•HCl revealed red shift (about 21 nm) 

in the absorption at the neutral state, probably due to the increase of the conjugated chain 

length after salinization. The red-shift of the absorption further confirmed EDOT-

MeNH2•HCl could be easily electropolymerized to form high quality film in water 

system. Moreover, the band gap (extracted from the onset of the π-π* transition) for the 

dedoped polymer was calculated as 1.68 eV (740 nm), which was slightly lower than the 

reported optical band gap of parent PEDOT-MeNH2 (1.7 eV). 

  The spectroelectrochemistry of PEDOT-MeNH2•HCl films upon oxidation was 

presented in Fig. 7. Stepwise oxidation of the polymer showed the fading of absorbance 

at 603 nm and typical evolution of peaks at more than 730 nm [47]. As each potential was 

stepped, the absorption in the visible regime began to decrease, whereas that in the NIR 

regime increased, indicating the creation of lower energy charge carriers at the expense of 
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π-π* transition [48]. Meanwhile, PEDOT-MeNH2•HCl film changed from amaranth in the 

reduced state to sky blue in the oxidized state. 

3.7. Electrochromic properties 

  Double-potential step chronoabsorptometry of PEDOT-MeNH2•HCl film monitored at 

602 and 1100 nm under the applied potentials of −0.5 and 0.8 V was performed to probe 

its electrochromic kinetic studies, and the results are shown in Fig. 8. The electrochromic 

parameters [optical contrast ratio (ΔT%), response time, and coloration efficiency (CE)] 

of PEDOT-MeNH2•HCl films were summarized in Table 2. The switching time was 

optimized to yield the maximum transmittance contrast, and the potentials were switched 

stepwise between neutral and oxidized states with a residence time of 10 s. 

  The ΔT% of PEDOT-MeNH2•HCl was found to be 26.38% at 602 nm and 17.47% at 

1100 nm, whereas the optical contrast of PEDOT-MeNH2 at the charge transfer band 

(582 nm) and NIR band (1050 nm) were 41.8% and 36.9%, respectively (Table 2). The 

optical contrast ratios of the PEDOT-MeNH2•HCl polymer was much lower than that of 

PEDOT-MeNH2 and PEDOT [49]. The phenomenon might be ascribed to the following 

reasons: (1) due to the introduction of the pendant chain, the doping nature of PEDOT 

was changed slightly; (2) structural defects could probably be an inevitable factor during 

the electropolymerization; (3) during the electrochromic tests, the polymer film showed 

poor adherence against the ITO-glass in comparison with the Pt electrode and some 

polymer/oligomers dispersed into the solvent. 

  As for electrochromic applications, response time of polymer is another important 

parameter since it indicates the speed of ions moving into the polymer chains during the 

doping process. As illustrated in Fig. 8, the response time required to attain 95% of total 
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transmittance difference was found to be 1.4 s at 602 nm and 3.2 s at 1100 nm from the 

reduced state to the oxidized state, which was faster than PEDOT-MeNH2 (582 nm, 2.4 s; 

1050 nm, 5.2 s) [33]. The difference can be attributed to the ease of charge transport in 

the conducting film when it is oxidized. The CE is also an important characteristic for 

electrochromic materials and obtained for a certain amount of the charge injected in the 

polymer films as a function of the change in optical density. In this study, CE was 

measured as 156 cm2 C-1 at 602 nm, which was a little higher than that of PEDOT-

MeNH2 (152 cm2 C-1) [33] and PEDOT (137 cm2 C-1) [49]. 

4. Conclusions 

  In summary, in order to improve the polymerization system and electrochromic 

properties of EDOT-MeNH2, a water-soluble monomer, EDOT-MeNH2•HCl, was 

synthesized through the method of salinization. Then the novel electrochromic PEDOT-

MeNH2•HCl was easily directly obtained by electropolymerization of monomer in 

aqueous solution. The polymer was comprehensively investigated including 

electrochemical, structure characterization, surface morphology, thermal stability, 

spectroelectrochemical, and electrochromic properties. The polymer showed good 

electrochemical activity in aqueous solution. PEDOT-MeNH2•HCl was found to exhibit 

the electrochromic nature by color changing from amaranth to sky blue with favorable 

coloration efficiency (156 cm2 C-1) and fast response time (1.4 s), which enhanced the 

electrochromic properties of PEDOT-MeNH2. Considering all these results, the method 

of salinization that improved the polymerization system and photoelectric properties of 

the polymer will hold promise for electrochromic devices and display applications. 
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Figure and table captions: 

Scheme 1 Synthetic route of EDOT-MeNH2·HCl and its electrochemical polymerization. 

Fig. 1 Successive cyclic voltammograms and anodic polarization curve (inset) of 0.01 M 

EDOT-MeNH2·HCl in H2O-HClO4 (1.0 M). Potential scan rate: 100 mV s-1. 

Fig. 2 FT-IR spectra of EDOT-MeNH2·HCl monomer (a) and the doped PEDOT-

MeNH2·HCl (b). 

Fig. 3 SEM images of the doped (A) and dedoped (B) PEDOT-MeNH2·HCl film. 

Fig. 4 TG and DTG curves of the doped PEDOT-MeNH2·HCl film. 

Fig. 5 (A) CVs of PEDOT-MeNH2·HCl in H2O-HClO4 (1.0 M) at potential scan rates of 

300, 275, 250, 225, 200, 175, 150, 125, 100, 75, 50, and 25 mV s-1. (B) Plots of redox 

peak current densities vs. potential scan rates. jp is the peak current densities, jp,a and jp,c 

denote the anodic and cathodic peak current densities, respectively. 

Fig. 6 Long-term redox stability of PEDOT-MeNH2·HCl upon repeated cycling in 

monomer-free H2O-HClO4 (1.0 M) solution at the scan rate of 150 mV s-1. 

Fig. 7 Spectroelectrochemistry of PEDOT-MeNH2·HCl film on ITO-coated glass in 

H2O-HClO4 (1.0 M) solution at applied potentials from -0.5V to 0.8 V. 

Fig. 8 Electrochromic switching and optical absorbance monitored at 602 nm (A) and 

1100 nm (B) profiles of PEDOT-MeNH2·HCl film recorded during double step 

spectrochronoamperometry between -0.5 V and 0.8 V for the switching time of 10 s. 
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Table 1 Assignments of FT-IR spectra of the monomer and the doped PEDOT-

MeNH2·HCl.  

Table 2 Electrochromic switching and optical absorbance monitored at 602 nm (A) and 

1100 nm (B) profiles of PEDOT-MeNH2·HCl film recorded during double step 

spectrochronoamperometry between -0.5 V and 0.8 V for the switching time of 10 s. 
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Fig. 6 
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Table 1 

 

Band (cm-1) 
Assignments 

EDOT-MeNH2•HCl PEDOT-MeNH2•HCl 

921 937 C-S-C deformation 

1483 1512 C=C stretching 

1195 1201 C-O-C stretching 

1359 1325 C-C stretching 

2819 2895 CH2 vibration 

3437 3475 NH3
+ in-plane vibration 

3005 Absent C-H vibration 
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Table 2 

Polymers 
Wavelength 

(nm) 

Tred 

(%) 

Tox 

(%) 

ΔT 

(%) 

Response time (s) CE 

(cm2 C-1) Oxidation Reduction 

PEDOT-

MeNH2·HCl 

602 24.52 50.90 26.38 1.4 9.6 156 

1100 70.98 53.51 17.47 3.2 6.0 55 

PEDOT-

MeNH2 

582 24.8 66.6 41.8 2.4 3.6 152.1 

1050 70.2 33.3 36.9 5.2 9.8 91.0 

PEDOT 585 24.77 78.50 54 0.36 - 137 
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