58 research outputs found

    Leukocytosis and C-Reactive Protein May Predict Development of Secondary Cerebral Vasospasm in Patients with Aneurysmal Subarachnoid Hemorrhage

    Get PDF
    Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Background and Objectives: Secondary cerebral vasospasm (CV) with subsequent delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) remains an unpredictable pathology. The aim of this retrospective study was to investigate the association between inflammatory parameters, white blood cell (WBC) count, and C-reactive protein plasma levels (CRP) and the occurrence of secondary CV in patients with aSAH. Materials and Methods: The medical records of 201 Intensive Care Unit patients in Riga East University Hospital with aSAH were retrospectively reviewed in a 24-month period. WBC count and CRP values were observed at admission to the hospital and on the third day. According to the inclusion criteria, 117 (48 males) participants were enrolled for further analysis, with average age of 56 ± 15 years (mean ± SD). In total, secondary CV was diagnosed in 21.4% of cases, and DCI in 22.4% of cases. The patients were classified into three groups: SAH-CV group (n = 25), SAH-DCI group (n = 12), and SAH or control group (n = 80), for comparative analysis. Results: We found that SAH-CV patients demonstrated notably higher inflammatory parameters compared to controls: WBC 13.2 ± 3.3 × 109 /L vs. 11.2 ± 3.7 × 109 /L; p = 0.01 and CRP median 9.3 mg/L vs. 1.9 mg/L; p <0.001, respectively. We found that the odds of developing CV increased by 5% for each CRP increase of 1 mg/L at admission (OR, 1.05; CI, 1.014–1.087; p = 0.006). Concomitantly, the odds increased by 16% for every rise in WBC count of 1 × 109 /L (OR, 1.16; CI, 1.02–1.32; p = 0.02). WBC count was associated with the occurrence of CV with 96% sensitivity and 40% specificity, with a cut off level of 10.015 × 109 /L and AUC 0.683; p = 0.006. CRP displayed 54% sensitivity and 90% specificity with a cut off value of 8.9 mg/L and AUC 0.751; p < 0.001. Moreover, higher values of inflammatory parameters at admission correlated with a longer stay in ICU (r = 0.3, p = 0.002 for WBC count and r = 0.305, p = 0.002 for CRP values), and poor outcome (death) was significantly associated with higher CRP values at admission and on the third day (16.1. vs. 2.2. and 57.4. vs. 11.1, p < 0.001, respectively). Higher mortality was detected in SAH-CV patients (32%) compared to controls (6.3%; p < 0.001). Conclusions: Inflammatory parameters such as WBC count and CRP values at admission might be helpful to predict the development of secondary CV.publishersversionPeer reviewe

    Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice

    Get PDF
    Synapse loss is the strongest correlate of cognitive decline in Alzheimer’s disease, and synapses are an attractive therapeutic target due to their plastic nature that allows for potential recovery with intervention. We have previously demonstrated in transgenic mice that form senile plaques that dendrites surrounding plaques become dystrophic and lose postsynaptic dendritic spines. Furthermore, we found strong evidence that plaque-associated dendritic changes are mediated by calcineurin, a calcium-dependent phosphatase involved in cell signaling, using in vitro models and genetically encoded inhibitors in mouse models. In this study, we pharmacologically inhibited calcineurin with FK506 treatment to test the hypothesis that calcineurin inhibition will allow recovery of plaque-associated synapse loss. We found that in plaque bearing transgenic mice, short term (1 week) FK506 treatment results in an amelioration of dendritic spine loss. We also observe an effect on spine morphology in wild-type mice with FK506 treatment. These data show that systemic FK506 administration, and hence calcineurin inhibition, may be neuroprotective for amyloid beta induced synaptic alterations

    Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin

    Get PDF
    Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1nullmdx5cv, NOD/LtSz-scid IL2Rγnull mice, or mdx nude mice, irrespective of whether they were injected with human cells. These “reactive” clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies

    A single dose of passive immunotherapy has extended benefits on synapses and neurites in an Alzheimer's disease mouse model

    Get PDF
    Alzheimer’s disease (AD) is a neurodegenerative disorder that impairs memory and cognition. One of the major neuropathological hallmarks is the accumulation of the extracellular senile plaques that are mainly composed of amyloid beta (Aβ) protein. Plaques are associated with synapse loss, dystrophic neurites and altered neurite trajectories. A reversal of such morphological changes has been observed days after single dose anti Aβ immunotherapy. In this study we investigated the extended effects of a single dose of passive anti Aβ immunotherapy on morphological changes associated with senile plaques. We found that although plaque burden was not reduced 30 days after immunotherapy, there were fewer dystrophic neurites around each plaque, a recovery of synapse density, and normalization of neurite curvature near plaques. Taken together these results suggest that single dose immunotherapy is sufficient to cause lasting benefits to the morphology of cortical neurons, implying substantial plasticity of neural circuits despite the continued presence of plaques

    Apolipoprotein E: Isoform Specific Differences in Tertiary Structure and Interaction with Amyloid-β in Human Alzheimer Brain

    Get PDF
    We applied a novel application of FLIM-FRET to in situ measurement and quantification of protein interactions to explore isoform specific differences in Aβ-ApoE interaction and ApoE tertiary conformation in senile plaques in human Alzheimer brain. ApoE3 interacts more closely with Aβ than ApoE4, but a greater proportion of Aβ molecules within plaques are decorated with ApoE4 than ApoE3, lending strong support to the hypothesis that isoform specific differences in ApoE are linked with Aβ deposition. We found an increased number of ApoE N-terminal fragments in ApoE4 plaques, consistent with the observation that ApoE4 is more easily cleaved than ApoE3. In addition, we measured a small but significant isoform specific difference in ApoE domain interaction. Based on our in situ data, supported by traditional biochemical data, we propose a pathway by which isoform specific conformational differences increase the level of cleavage at the hinge region of ApoE4, leading to a loss of ApoE function to mediate clearance of Aβ and thereby increase the risk of AD for carriers of the APOEε4 allele

    Calcineurin inhibition with systemic FK506 treatment increases dendritic branching and dendritic spine density in healthy adult mouse brain

    Get PDF
    Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and recent data suggest that calcineurin activation mediates some of the neurotoxicity of the Alzheimer related neurotoxin Aβ. Immunosuppression via calcineurin inhibition with the compound FK506 is an important treatment for organ transplant patients. Here we use Golgi impregnation techniques, along with a new survival analysis-based statistical approach for analysis of dendritic complexity, to show that in healthy adult mice one week of treatment with FK506 affects both the branching patterns and dendritic spine density of cortical neurons. These results indicate that calcineurin inhibition leads to readily detectable changes in brain morphology, further implicating calcineurin related pathways in both the function and structure of the adult brain

    Functionally heterogeneous human satellite cells identified by single cell RNA sequencing.

    Get PDF
    Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations

    Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease

    Get PDF
    Senile plaques accumulate over the course of decades in the brains of patients with Alzheimer’s disease. A fundamental tenet of the amyloid hypothesis of Alzheimer’s disease is that the deposition of amyloid-β precedes and induces the neuronal abnormalities that underlie dementia(1). This idea has been challenged, however, by the suggestion that alterations in axonal trafficking and morphological abnormalities precede and lead to senile plaques(2). The role of microglia in accelerating or retarding these processes has been uncertain. To investigate the temporal relation between plaque formation and the changes in local neuritic architecture, we used longitudinal in vivo multiphoton microscopy to sequentially image young APPswe/PS1d9xYFP (B6C3-YFP) transgenic mice(3). Here we show that plaques form extraordinarily quickly, over 24 h. Within 1–2 days of a new plaque’s appearance, microglia are activated and recruited to the site. Progressive neuritic changes ensue, leading to increasingly dysmorphic neurites over the next days to weeks. These data establish plaques as a critical mediator of neuritic pathology

    Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation

    Get PDF
    Amyloid beta containing plaques are surrounded by dystrophic neurites in the Alzheimer disease (AD) brain, but whether and how plaques induce these neuritic abnormalities remain unknown. We tested the hypothesis that soluble oligomeric assemblies of Aβ, which surround plaques, induce calcium mediated secondary cascades that lead to dystrophic changes in local neurites. We show that soluble Aβ oligomers lead to activation of the calcium-dependent phosphatase CaN (PP2B) which in turn activates the transcriptional factor nuclear factor of activated T cells (NFAT). Activation of these signaling pathways, even in the absence of Aβ, is sufficient to produce a virtual phenocopy of Aβ induced dystrophic neurites, dendritic simplification, and dendritic spine loss in both neurons in culture and in the adult mouse brain. Importantly, the morphological deficits in the vicinity of Aβ deposits in a mouse model of AD are ameliorated by CaN inhibition, supporting the hypothesis that CaN/NFAT are aberrantly activated by Aβ, and that CaN/NFAT activation is responsible for disruption of neuronal structure near plaques. In accord with this, we also detect increased levels of an active form of CaN and NFATc4 in the nuclear fraction from the cortex of patients with AD. Thus, Aβ appears to mediate the neurodegeneration of AD, at least in part, by activation of CaN and subsequent NFAT-mediated downstream cascades

    New therapeutic targets in Alzheimer's disease: brain deregulation of calcium and zinc

    Get PDF
    The molecular determinants of Alzheimer's (AD) disease are still not completely known; however, in the past two decades, a large body of evidence has indicated that an important contributing factor for the disease is the development of an unbalanced homeostasis of two signaling cations: calcium (Ca2+) and zinc (Zn2+). Both ions serve a critical role in the physiological functioning of the central nervous system, but their brain deregulation promotes amyloid-β dysmetabolism as well as tau phosphorylation. AD is also characterized by an altered glutamatergic activation, and glutamate can promote both Ca2+ and Zn2+ dyshomeostasis. The two cations can operate synergistically to promote the generation of free radicals that further intracellular Ca2+ and Zn2+ rises and set the stage for a self-perpetuating harmful loop. These phenomena can be the initial steps in the pathogenic cascade leading to AD, therefore, therapeutic interventions aiming at preventing Ca2+ and Zn2+ dyshomeostasis may offer a great opportunity for disease-modifying strategies
    corecore