418 research outputs found

    Majorana fermions in pinned vortices

    Full text link
    Exploiting the peculiar properties of proximity-induced superconductivity on the surface of a topological insulator, we propose a device which allows the creation of a Majorana fermion inside the core of a pinned Abrikosov vortex. The relevant Bogolyubov-de Gennes equations are studied analytically. We demonstrate that in this system the zero-energy Majorana fermion state is separated by a large energy gap, of the order of the zero-temperature superconducting gap Ξ”\Delta, from a band of single-particle non-topological excitations. In other words, the Majorana fermion remains robust against thermal fluctuations, as long as the temperature remains substantially lower than the critical superconducting temperature. Experimentally, the Majorana state may be detected by measuring the tunneling differential conductance at the center of the Abrikosov vortex. In such an experiment, the Majorana state manifests itself as a zero-bias anomaly separated by a gap, of the order of Ξ”\Delta, from the contributions of the nontopological excitations.Comment: 9 pages, 2 eps figures, new references are added, several typos are correcte

    Instabilities of the AA-stacked graphene bilayer

    Full text link
    Tight-binding calculations predict that the AA-stacked graphene bilayer has one electron and one hole conducting bands, and that the Fermi surfaces of these bands coincide. We demonstrate that as a result of this degeneracy, the bilayer becomes unstable with respect to a set of spontaneous symmetry violations. Which of the symmetries is broken depends on the microscopic details of the system. We find that antiferromagnetism is the more stable order parameter. This order is stabilized by the strong on-site Coulomb repulsion. For an on-site repulsion energy typical for graphene systems, the antiferromagnetic gap can exist up to room temperatures.Comment: 4 pages, 2 eps figure, submitted to Phys. Rev. Let

    Π‘ΠΈΠ½Ρ‚Π΅Π· Π½ΠΎΠ²ΠΈΡ… спіроциклічних N-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 2-Ρ‚Ρ–ΠΎΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-4,6-Π΄Ρ–ΠΎΠ½Ρ–Π²

    Get PDF
    A convenient and efficient method for the synthesis of new unsaturated spiro-annulated N-aryl-4,6-dioxopyrimidine-2-thione derivatives has been developed. The resulting compounds can be potential biological active molecules or precursors for further chemical modification.Aim. To develop the methods for the synthesis of new unsaturated spiro-annulated 2-thiopyrimidine-4,6-dione derivatives, which can be used as potentially biological active molecules or precursors for their formation.Results and discussion. By condensation of N-aryl-substituted thioureas and allylmalonic acid using acetic anhydride or acetyl chloride the series of 5-allyl-substituted 2-thiopyrimidinediones has been synthesized. Their further alkylation with allyl bromide or metallyl chloride led to formation of 5,5-dialkenyl derivatives, which were converted to the corresponding unsaturated spirocyclic dioxopyrimidine-2-thiones by ring-closing metathesis.Β Experimental part. The synthesis of the starting compounds and title products was performed by preparative chemical methods, TLC and column chromatography, elemental analysis, NMR-spectroscopy.Conclusions. The efficient three-step synthetic route of new unsaturated spiro-annulated N-aryl-4,6-dioxopyrimidine-2-thione derivatives from the starting N-arylsubstituted thioureas and allylmalonic acid has been developed. The spiro-annulated products obtained can find application in biological and pharmaceutical science or as starting substrates for further chemical modification.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ ΠΈ эффСктивный ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСза Π½ΠΎΠ²Ρ‹Ρ… нСнасыщСнных спиро-Π°Π½Π½Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… N-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 2-Ρ‚ΠΈΠΎΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-4,6-Π΄ΠΈΠΎΠ½ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ соСдинСния ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΈΠ»ΠΈ исходными вСщСствами для дальнСйшСй химичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² получСния Π½ΠΎΠ²Ρ‹Ρ… нСнасыщСнных спиро-Π°Π½Π½Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 2-Ρ‚ΠΈΠΎΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-4,6-Π΄ΠΈΠΎΠ½Π° ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² для ΠΈΡ… получСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. ΠšΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ†ΠΈΠ΅ΠΉ N-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… Ρ‚ΠΈΠΎΠΌΠΎΡ‡Π΅Π²ΠΈΠ½ ΠΈ Π°Π»Π»ΠΈΠ»ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты с использованиСм уксусного Π°Π½Π³ΠΈΠ΄Ρ€ΠΈΠ΄Π° ΠΈΠ»ΠΈ Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° синтСзирован ряд 5-Π°Π»Π»ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 2-Ρ‚ΠΈΠΎΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½Π΄ΠΈΠΎΠ½ΠΎΠ². ΠŸΡ€ΠΈ ΠΈΡ… ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π°Π»Π»ΠΈΠ»Π±Ρ€ΠΎΠΌΠΈΠ΄ΠΎΠΌ ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ 5,5-Π΄ΠΈΠ°Π»ΠΊΠ΅Π½ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ рСакциями мСтатСзиса с Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ Ρ†ΠΈΠΊΠ»Π° Π±Ρ‹Π»ΠΈ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π΅ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ спироцикличСскиС диоксопиримидин-2-Ρ‚ΠΈΠΎΠ½Ρ‹.Β  Β Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π‘ΠΈΠ½Ρ‚Π΅Π· исходных соСдинСний ΠΈ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² классичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΈ; очистка ΠΈ идСнтификация ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ тонкослойной ΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΎΡ‡Π½ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π°, спСктроскопиСй ЯМР.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ эффСктивный трСхстадийный ΠΏΡƒΡ‚ΡŒ получСния ΠΈΠ· исходных Ρ‚ΠΈΠΎΠΌΠΎΡ‡Π΅Π²ΠΈΠ½ ΠΈ Π°Π»Π»ΠΈΠ»ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты Π½ΠΎΠ²Ρ‹Ρ… нСнасыщСнных спиро-Π°Π½Π½Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… N-Π°Ρ€ΠΈΠ»-4,6-диоксопиримидин-2-Ρ‚ΠΈΠΎΠ½Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ спироцикличСскиС ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ фармацСвтичСской Π½Π°ΡƒΠΊΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ исходныС соСдинСния для дальнСйшСй химичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ.Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ Π·Ρ€ΡƒΡ‡Π½ΠΈΠΉ Ρ‚Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСзу Π½ΠΎΠ²ΠΈΡ… нСнасичСних спіро-Π°Π½Π΅Π»ΡŒΠΎΠ²Π°Π½ΠΈΡ… N-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 2-Ρ‚Ρ–ΠΎΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-4,6-Π΄Ρ–ΠΎΠ½Ρ–Π². ΠžΠ΄Π΅Ρ€ΠΆΠ°Π½Ρ– сполуки ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΈΠΌΠΈ Π±Ρ–ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ Π°Π±ΠΎ прСкурсорами для ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΎΡ— Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ—. ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ – Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² одСрТання Π½ΠΎΠ²ΠΈΡ… нСнасичСних спіро-Π°Π½Π΅Π»ΡŒΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 2-Ρ‚Ρ–ΠΎΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-4,6-Π΄Ρ–ΠΎΠ½Ρƒ як ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΈΡ… Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… сполук Π°Π±ΠΎ Π½Π°ΠΏΡ–Π²ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² для Ρ—Ρ… отримання. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. ΠšΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ†Ρ–Ρ”ΡŽN-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… тіосСчовин Ρ‚Π° Π°Π»Ρ–Π»ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Ρ–Π· застосуванням ΠΎΡ†Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π³Ρ–Π΄Ρ€ΠΈΠ΄Ρƒ Π°Π±ΠΎ Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρƒ синтСзовано ΡΠ΅Ρ€Ρ–ΡŽ 5-Π°Π»Ρ–Π»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 2-Ρ‚Ρ–ΠΎΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½Π΄Ρ–ΠΎΠ½Ρ–Π². ΠŸΡ€ΠΈ ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΎΠΌΡƒ Ρ—Ρ… Π°Π»ΠΊΡ–Π»ΡƒΠ²Π°Π½Π½Ρ– Π°Π»Ρ–Π»Π±Ρ€ΠΎΠΌΡ–Π΄ΠΎΠΌ Π°Π±ΠΎ ΠΌΠ΅Ρ‚Π°Π»Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠΌ ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΎ 5,5-Π΄Ρ–Π°Π»ΠΊΠ΅Π½Ρ–Π»ΡŒΠ½Ρ– ΠΏΠΎΡ…Ρ–Π΄Π½Ρ–, які рСакціями мСтатСзису Ρ–Π· закриттям Ρ†ΠΈΠΊΠ»Ρƒ Π±ΡƒΠ»ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€Π΅Π½ΠΎ Π½Π° Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½Ρ– нСнасичСні спіроциклічні діоксопіримідин-2-Ρ‚Ρ–ΠΎΠ½ΠΈ.Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π‘ΠΈΠ½Ρ‚Π΅Π· Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… сполук Ρ‚Π° Ρ†Ρ–Π»ΡŒΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² класичними ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΡ— Ρ…Ρ–ΠΌΡ–Ρ—; очистку Ρ‚Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук здійснСно ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Ρ‚ΠΎΠ½ΠΊΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΎΡ— Ρ‚Π° ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΎΠ²ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ—, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΈΠΌ Π°Π½Π°Π»Ρ–Π·ΠΎΠΌ, ЯМР-ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΡ–Ρ”ΡŽ.Висновки. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ тристадійний ΡˆΠ»ΡΡ… отримання Π· Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… тіосСчовин Ρ‚Π° Π°Π»Ρ–Π»ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Π½ΠΎΠ²ΠΈΡ… нСнасичСних спіро-Π°Π½Π΅Π»ΡŒΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… N-Π°Ρ€ΠΈΠ»-4,6-діоксопіримідин-2-Ρ‚Ρ–ΠΎΠ½Ρƒ. ΠžΠ΄Π΅Ρ€ΠΆΠ°Π½Ρ– спіроциклічні ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π·Π½Π°ΠΉΡ‚ΠΈ застосування Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ— Ρ‚Π° Ρ„Π°Ρ€ΠΌΠ°Ρ†Π΅Π²Ρ‚ΠΈΡ‡Π½Ρ–ΠΉ Π½Π°ΡƒΡ†Ρ–, Π°Π±ΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΠ²Π°Ρ‚ΠΈΡΡŒ як Π²ΠΈΡ…Ρ–Π΄Π½Ρ– сполуки для ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΎΡ— Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ—

    Density-density propagator for one-dimensional interacting spinless fermions with non-linear dispersion and calculation of the Coulomb drag resistivity

    Full text link
    Using bosonization-fermionization transformation we map the Tomonaga-Luttinger model of spinless fermions with non-linear dispersion on the model of fermionic quasiparticles whose interaction is irrelevant in the renormalization group sense. Such mapping allows us to set up an expansion for the density-density propagator of the original Tomonaga-Luttinger Hamiltonian in orders of the (irrelevant) quasiparticle interaction. The lowest order term in such an expansion is proportional to the propagator for free fermions. The next term is also evaluated. The propagator found is used for calculation of the Coulomb drug resistivity rr in a system of two capacitively coupled one-dimensional conductors. It is shown that rr is proportional to T2T^2 for both free and interacting fermions. The marginal repulsive in-chain interaction acts to reduce rr as compared to the non-interacting result. The correction to rr due to the quasiparticle interaction is found as well. It scales as T4T^4 at low temperature.Comment: 5 pages, 1 eps figure; the new version of the e-print corrects an error, which exists in the original submission; fortunately, all important conclusions of the study remain vali

    Stem-technologies: mathematics and informatics

    Full text link
    Algorithms solutions of tasks in the field of the theory of numbers within implementation of the STEM project are proposed and realized. Calculations in a package of computer algebra on an open code in the environment of Linux DebianΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π² области Ρ‚Π΅ΠΎΡ€ΠΈΠΈ чисСл Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° STEM. ВычислСния Π² ΠΏΠ°ΠΊΠ΅Ρ‚Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π½Π° ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΊΠΎΠ΄Π΅ Π² срСдС Linux Debia

    Experimental (computing) theory of numbers

    Full text link
    Carrying out numerical experiments with Euler's function. Specification of the theorem of Mertens. Calculations in a package of computer algebra on an open code in the environment of Linux DebianΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ числСнных экспСримСнтов с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π­ΠΉΠ»Π΅Ρ€Π°. Π£Ρ‚ΠΎΡ‡Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠœΠ΅Ρ€Ρ‚Π΅Π½ΡΠ°. ВычислСния Π² ΠΏΠ°ΠΊΠ΅Ρ‚Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π½Π° ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΊΠΎΠ΄Π΅ Π² срСдС Linux Debia

    Aggregated estimation of the basic parameters of biological production and the carbon budget of Russian terrestrial ecosytems: 2. Net primary production

    Get PDF
    The estimated net primary production (NPP) of Russian terrestrial ecosystems (annual average over the period from 1988 to 1992) is 9544 Tg of dry matter, or 4353 Tg of carbon. Of the total amount, forests account for approximately 39.2% (here and below, comparisons are made with respect to carbon content); natural grasslands and brushwoods, for 27.6%; farmlands (arable land and cultivated pastures), for 22.0%; and wetlands, for 11.2%. The average NPP density on lands covered with vegetation (1629.8 million hectares in Russia) is 267 g C/m2per year. The highest value (498 g C/m2per year) is characteristic of arable lands. Other land-use/land-cover (LULC) classes have the following NPP densities (in areas covered with vegetation): grasslands and brushwoods, 278 g C/m2; forests, 224 g C/m2; and wetlands, 219 g C/m2per year. In general, Russian terrestrial ecosystems accumulate 59.7% of the total NPP in the aboveground phytomass (47.8% in green parts and 11.9% in wood) and 40.3% in the underground phytomass. The latter parameter differs significantly in different LULC classes and bioclimatic zones. According to calculations, the uncertainty in estimating the total NPP is 11% (a priori confidential probability 0.9)

    Teaching English in the higher education institution: teachers and students perspective

    Get PDF
    The purpose of the given study is to provide description of English for Specific Purposes (ESP) course implementation in Russian higher educational institutions. The authors consider the experience of ESP training at Ogarev Mordovia State University (Saransk, Russia) and outline the most typical issues faced by ESP teachers in real-life conditions of education process. The following problem aspects are pointed out: appropriate selection and use of training materials for the educational course, multilevel groups issue, necessity of due ESP course design etc. The authors also provide the results of the survey for students of some departments of Mordovia Ogarev State University listing the most relevant issues and challenges faced by them while taking an ESP course. The creators of the paper suggest several ways of solution for the issues stated and provide possible directions for the development and quality improvement of ESP courses in the higher education system of Russia

    Suspensions of supracolloidal magnetic polymers: self-assembly properties from computer simulations

    Full text link
    We study self-assembly in suspensions of supracolloidal polymer-like structures made of crosslinked magnetic particles. Inspired by self-assembly motifs observed for dipolar hard spheres, we focus on four different topologies of the polymer-like structures: linear chains, rings, Y-shaped and X-shaped polymers. We show how the presence of the crosslinkers, the number of beads in the polymer and the magnetic interparticle interaction affect the structure of the suspension. It turns out that for the same set of parameters, the rings are the least active in assembling larger structures, whereas the system of Y- and especially X-like magnetic polymers tend to form very large loose aggregates

    Josephson Coupling through a Quantum Dot

    Full text link
    We derive, via fourth order perturbation theory, an expression for the Josephson current through a gated interacting quantum dot. We analyze our expression for two different models of the superconductor-dot-superconductor (SDS) system. When the matrix elements connecting dot and leads are featureless constants, we compute the Josephson coupling J_c as a function of the gate voltage and Coulomb interaction. In the diffusive dot limit, we compute the probability distribution P(J_c) of Josephson couplings. In both cases, pi junction behavior (J_c < 0) is possible, and is not simply dependent on the parity of the dot occupancy.Comment: 9 pages; 3 encapsulated PostScript figure
    • …
    corecore