149 research outputs found

    Synchronization of uncoupled oscillators by common gamma impulses: from phase locking to noise-induced synchronization

    Full text link
    Nonlinear oscillators can mutually synchronize when they are driven by common external impulses. Two important scenarios are (i) synchronization resulting from phase locking of each oscillator to regular periodic impulses and (ii) noise-induced synchronization caused by Poisson random impulses, but their difference has not been fully quantified. Here we analyze a pair of uncoupled oscillators subject to common random impulses with gamma-distributed intervals, which can be smoothly interpolated between regular periodic and random Poisson impulses. Their dynamics are charac- terized by phase distributions, frequency detuning, Lyapunov exponents, and information-theoretic measures, which clearly reveal the differences between the two synchronization scenarios.Comment: 18 page

    Threats from the air: damselfly predation on diverse prey taxa

    Get PDF
    To understand the diversity and strength of predation in natural communities, researchers must quantify the total amount of prey species in the diet of predators. Metabarcoding approaches have allowed widespread characterization of predator diets with high taxonomic resolution. To determine the wider impacts of predators, researchers should combine DNA techniques with estimates of population size of predators using mark–release–recapture (MRR) methods, and with accurate metrics of food consumption by individuals. Herein, we estimate the scale of predation exerted by four damselfly species on diverse prey taxa within a well‐defined 12‐ha study area, resolving the prey species of individual damselflies, to what extent the diets of predatory species overlap, and which fraction of the main prey populations are consumed. We identify the taxonomic composition of diets using DNA metabarcoding and quantify damselfly population sizes by MRR. We also use predator‐specific estimates of consumption rates, and independent data on prey emergence rates to estimate the collective predation pressure summed over all prey taxa and specific to their main prey (non‐biting midges or chironomids) of the four damselfly species. The four damselfly species collectively consumed a prey mass equivalent to roughly 870 (95% CL 410–1,800) g, over 2 months. Each individual consumed 29%–66% (95% CL 9.4–123) of its body weight during its relatively short life span (2.1–4.7 days; 95% CL 0.74–7.9) in the focal population. This predation pressure was widely distributed across the local invertebrate prey community, including 4 classes, 19 orders and c. 140 genera. Different predator species showed extensive overlap in diets, with an average of 30% of prey shared by at least two predator species. Of the available prey individuals in the widely consumed family Chironomidae, only a relatively small proportion (0.76%; 95% CL 0.35%–1.61%) were consumed. Our synthesis of population sizes, per‐capita consumption rates and taxonomic distribution of diets identifies damselflies as a comparatively minor predator group of aerial insects. As the next step, we should add estimates of predation by larger odonate species, and experimental removal of odonates, thereby establishing the full impact of odonate predation on prey communities.Peer reviewe

    Predators reduce extinction risk in noisy metapopulations

    Get PDF
    Background Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches. Findings By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model. Conclusions Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level

    Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Get PDF
    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements

    An Emerging Infectious Disease Triggering Large-Scale Hyperpredation

    Get PDF
    Hyperpredation refers to an enhanced predation pressure on a secondary prey due to either an increase in the abundance of a predator population or a sudden drop in the abundance of the main prey. This scarcely documented mechanism has been previously studied in scenarios in which the introduction of a feral prey caused overexploitation of native prey. Here we provide evidence of a previously unreported link between Emergent Infectious Diseases (EIDs) and hyperpredation on a predator-prey community. We show how a viral outbreak caused the population collapse of a host prey at a large spatial scale, which subsequently promoted higher-than-normal predation intensity on a second prey from shared predators. Thus, the disease left a population dynamic fingerprint both in the primary host prey, through direct mortality from the disease, and indirectly in the secondary prey, through hyperpredation. This resulted in synchronized prey population dynamics at a large spatio-temporal scale. We therefore provide evidence for a novel mechanism by which EIDs can disrupt a predator-prey interaction from the individual behavior to the population dynamics. This mechanism can pose a further threat to biodiversity through the human-aided disruption of ecological interactions at large spatial and temporal scales.MM and JASZ were partially supported by a project of the Spanish Ministerio de Educación y Ciencia (reference CGL-2006-10689/BOS)

    Comparing Models for Early Warning Systems of Neglected Tropical Diseases

    Get PDF
    Early Warning Systems (EWS) are management tools to predict the occurrence of epidemics. They are based on the dependence of a given infectious disease on environmental variables. Although several neglected tropical diseases are sensitive to the effect of climate, our ability to predict their dynamics has been barely studied. In this paper, we use several models to determine if the relationship between cases and climatic variability is robust—that is, not simply an artifact of model choice. We propose that EWS should be based on results from several models that are to be compared in terms of their ability to predict future number of cases. We use a specific metric for this comparison known as the predictive R2, which measures the accuracy of the predictions. For example, an R2 of 1 indicates perfect accuracy for predictions that perfectly match observed cases. For cutaneous leishmaniasis, R2 values range from 72% to77%, well above predictions using mean seasonal values (64%). We emphasize that predictability should be evaluated with observations that have not been used to fit the model. Finally, we argue that EWS should incorporate climatic variables that are known to have a consistent relationship with the number of observed cases
    corecore