54 research outputs found

    Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids

    Get PDF
    New stratigraphic ranges for genera of Desmoinesian-Virgilian ammonoids are presented, based on analysis of 40,000 specimens collected from over 70 ammonoid-bearing horizons that represent at least 40 successive stratigraphic levels in the North American midcontinent. These range revisions indicate that current generic-level ammonoid zonations are inadequate, especially for correlation of Pennsylvanian series and stage boundaries. Six high-confidence, largely generic-level first-occurrence zones are proposed for the Desmoinesian through Virgilian stages: Wellerites Zone, Eothalassoceras Zone, Pennoceras Zone, Preshumardites Zone, Pseudaktubites Zone, and Shumardites Zone. Fifteen zones of lesser confidence for correlation are also suggested. The Shumarditidae Plummer & Scott, 1937, is emended to include Preshumardites Plummer & Scott, 1937, Pseudaktubites gen. nov. (type species, Preshumardites stainbrooki Plummer & Scott, 1937), and Shumardites Smith, 1903. Early Permian (Sakmarian) species previously assigned to Preshumardites are reassigned to Andrianovia gen. nov. (type species ?Preshumardites sakmarae Ruzhencev, 1938). Aktubites Ruzhencev, 1955, Eoshumardites Popov, 1960, and Parashumardites Ruzhencev, 1939, previously included in the Shumarditidae, are assigned to the new family Parashumarditidae. Eovidrioceras inexpectans gen. nov., sp. nov. is included and is interpreted as the ancestor of the cyclobacean family Vidrioceratidae Plummer & Scott, 1937. The base of the revised Wellerites Zone, defined by the first occurrence of the nominate genus, approximates but does not coincide with the Atokan-Desmoinesian boundary. Recorrelation of the stratigraphic level of the Collinsville, Oklahoma, ammonoid locality from the "Seminole Formation" (basal Missourian) to the Holdenville Formation (upper Desmoinesian), based on lithostratigraphic evidence, effectively places the first occurrence of Eothalassoceras in the upper Desmoinesian. Because Wellerites apparently became extinct before the end of the Desmoinesian, the revised Eothalassoceras Zone is used to represent the upper Desmoinesian. The Middle-Upper Pennsylvanian boundary (Desmoinesian-Missourian boundary) can be recognized by the appearance of Pennoceras, which defines the base of the new Pennoceras Zone. The Pennoceras Zone is an excellent indicator of lower Missourian strata in the northern midcontinent, north-central Texas, the Marathon Uplift, and the Appalachian Basin. The new Preshumardites Zone occupies most of the upper part of the Missourian Stage. The appearance of the ancestral shumarditid Pseudaktubites, which defines the base of the new Pseudaktubites Zone, occurs one cycle below the Missourian-Virgilian boundary, which is currently recognized at the top of the South Bend Limestone Member in eastern Kansas. No recognizable biostratigraphic event coincides with the South Bend Member, thereby resulting in an uncorrelatable chronostratigraphic boundary. The largest changeover in ammonoid faunas takes place at the base of strata containing the upper part of the Pseudaktubites Zone (Pseudaktubites stainbrooki Subzone). The base of the Pseudaktubites stainbrooki Subzone is stratigraphically near the original Missourian-Virgilian boundary. It is recommended that the stratigraphic level containing the base of the Pseudaktubites stainbrooki Subzone be adopted as the official base of the Virgilian Stage. Recognition of the upper subzone of the Pseudaktubites Zone (Pseudaktubites stainbrooki Subzone) within the Colony Creek Shale Member in north-central Texas places the base of the Virgilian within the upper part of the Canyon Group and substantially below the current position at the Canyon-Cisco group boundary. Shumardites, a taxon previously used to mark the base of the Virgilian Stage, appears in early middle Virgilian strata; consequently, the revised Shumardites Zone represents the middle-upper Virgilian interval

    Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids

    Get PDF
    New stratigraphic ranges for genera of Desmoinesian-Virgilian ammonoids are presented, based on analysis of 40,000 specimens collected from over 70 ammonoid-bearing horizons that represent at least 40 successive stratigraphic levels in the North American midcontinent. These range revisions indicate that current generic-level ammonoid zonations are inadequate, especially for correlation of Pennsylvanian series and stage boundaries. Six high-confidence, largely generic-level first-occurrence zones are proposed for the Desmoinesian through Virgilian stages: Wellerites Zone, Eothalassoceras Zone, Pennoceras Zone, Preshumardites Zone, Pseudaktubites Zone, and Shumardites Zone. Fifteen zones of lesser confidence for correlation are also suggested. The Shumarditidae Plummer & Scott, 1937, is emended to include Preshumardites Plummer & Scott, 1937, Pseudaktubites gen. nov. (type species, Preshumardites stainbrooki Plummer & Scott, 1937), and Shumardites Smith, 1903. Early Permian (Sakmarian) species previously assigned to Preshumardites are reassigned to Andrianovia gen. nov. (type species ?Preshumardites sakmarae Ruzhencev, 1938). Aktubites Ruzhencev, 1955, Eoshumardites Popov, 1960, and Parashumardites Ruzhencev, 1939, previously included in the Shumarditidae, are assigned to the new family Parashumarditidae. Eovidrioceras inexpectans gen. nov., sp. nov. is included and is interpreted as the ancestor of the cyclobacean family Vidrioceratidae Plummer & Scott, 1937. The base of the revised Wellerites Zone, defined by the first occurrence of the nominate genus, approximates but does not coincide with the Atokan-Desmoinesian boundary. Recorrelation of the stratigraphic level of the Collinsville, Oklahoma, ammonoid locality from the "Seminole Formation" (basal Missourian) to the Holdenville Formation (upper Desmoinesian), based on lithostratigraphic evidence, effectively places the first occurrence of Eothalassoceras in the upper Desmoinesian. Because Wellerites apparently became extinct before the end of the Desmoinesian, the revised Eothalassoceras Zone is used to represent the upper Desmoinesian. The Middle-Upper Pennsylvanian boundary (Desmoinesian-Missourian boundary) can be recognized by the appearance of Pennoceras, which defines the base of the new Pennoceras Zone. The Pennoceras Zone is an excellent indicator of lower Missourian strata in the northern midcontinent, north-central Texas, the Marathon Uplift, and the Appalachian Basin. The new Preshumardites Zone occupies most of the upper part of the Missourian Stage. The appearance of the ancestral shumarditid Pseudaktubites, which defines the base of the new Pseudaktubites Zone, occurs one cycle below the Missourian-Virgilian boundary, which is currently recognized at the top of the South Bend Limestone Member in eastern Kansas. No recognizable biostratigraphic event coincides with the South Bend Member, thereby resulting in an uncorrelatable chronostratigraphic boundary. The largest changeover in ammonoid faunas takes place at the base of strata containing the upper part of the Pseudaktubites Zone (Pseudaktubites stainbrooki Subzone). The base of the Pseudaktubites stainbrooki Subzone is stratigraphically near the original Missourian-Virgilian boundary. It is recommended that the stratigraphic level containing the base of the Pseudaktubites stainbrooki Subzone be adopted as the official base of the Virgilian Stage. Recognition of the upper subzone of the Pseudaktubites Zone (Pseudaktubites stainbrooki Subzone) within the Colony Creek Shale Member in north-central Texas places the base of the Virgilian within the upper part of the Canyon Group and substantially below the current position at the Canyon-Cisco group boundary. Shumardites, a taxon previously used to mark the base of the Virgilian Stage, appears in early middle Virgilian strata; consequently, the revised Shumardites Zone represents the middle-upper Virgilian interval

    Fauna Associated With the Pennsylvanian Floral Zones of the 7-11 Mine, Columbiana County, Northeastern Ohio

    Get PDF
    Author Institution: Department of Geological Sciences, Ohio UniversityStratigraphically significant compression floras have been found in lower Conemaugh ironstone beds and lower Conemaugh dark argillaceous shales in the 7-11 Mine, Columbiana County, Ohio. The known fauna associated with the ironstone beds is limited to branchiopods, myriapods, and a single arachnid. The dark argillaceous shales yielded both invertebrate and vertebrate fossils including freshwater sharks, fish, ostracods, branchiopods, myriapods, arachnids, and insects. The absence of any marine fauna supports the contention that both the ironstone beds and the dark argillaceous shales were deposited in a freshwater environment

    Carboniferous and Permian Bactritoidea (Cephalopoda) in North America

    Get PDF
    75 p., 14 fig., 41 pl.http://paleo.ku.edu/contributions.htm

    Carboniferous coleoids with mixed coleoid-orthocerid characteristics: a new light oncephalopod evolution

    No full text
    Orthocerid-like coleoids with mixed orthocerid-coleoid characteristics are described for the first time from the Carboniferous of USA. The appearance of these coleoids represents transitional morphology between the orthoconic nautiloid and coleoid lineages. This transitional state is based on the new genus Colorthoceras n. gen. with three assigned new species (C. inflata n. sp., C. tubulata n. sp. and C. concavus n. sp.) in the new family Colorthoceridae of the new order Colorthocerida. Orthocerid nautiloid characteristics include a longiconic phragmocone with a well-developed body chamber, and a central, sub-central or sub-ventral siphuncle with endosiphuncular deposits. The shell wall in the new order Colorthocerida is characterized by the coleoid characteristics of a lack of the nacreous layer, with a high content of chitin that created a somewhat semi-elastic shell. The connecting rings are uni-layered, directly continuous from the septal neck, and have a mixed chitinous-calcareous composition similar to that in order Mixosiphonata. The shell wall structure in these unique orthocerid-like coleoids is similar to that in the previously described Carboniferous bactritoid-like coleoids. The evolution of these coleoid characteristics appears to represent an unsuccessful evolutionary experiment, as the diversity of this nautiloid lineage was in gradual decline in the Upper Paleozoic

    Imocaris tuberculata, n. gen., n. sp. (Crustacea: Decapoda) from the Upper Mississippian Imo Formation, Arkansas

    No full text
    Volume: 20Start Page: 165End Page: 16

    Caught in the act? Distraction sinking in ammonoid cephalopods

    Full text link
    Two specimens of the Late Mississippian ammonoid cephalopod Metadimorphoceras sp. were recovered from the Bear Gulch Limestone in Montana. This unit was deposited in the lowest part of the Big Snowy Basin, where the bottom waters are thought to have been strongly oxygen deficient. The two nearly equally sized specimens are impressions with soft tissues preserved as brown carbonaceous smears. Diagenetic processes destroyed their aragonitic shells. The preserved soft tissues are interpreted as mandibles, remains of food in the crop, and, possibly, ovaries and eyes. The specimens are on their sides, aperture-to-aperture, and probably the male is on the left and the female is on the right. The specimens are thought to have been in the process of copulation when they died. Copulation by most (all?) externally shelled cephalopods (extinct ammonoids and fossil and extant nautiloids) was probably in a head-to-head, aperture-to-aperture position. This was probably governed in part by restricted accessibility to the female reproductive organs due to the presence of the shell and the ability of both animals to partly withdraw into their shells during copulation. The shell protected them from predators during copulation. In coleoids, which lack an external shell, copulation is a more rapid affair due to the greater vulnerability from predators including other coleoids. We suggest that the fossils from the Bear Gulch Limestone and similar finds of paired ammonoids preserved together with interlocking apertures, and including soft parts in the body chamber, represent examples of ammonoid behavior frozen in time. The two ammonoids were probably too pre-occupied with copulation to notice that they were sinking into the hypoxic bottom waters of the basin and facing suffocation (distraction sinking)

    Muscle attachment scars in a Carboniferous goniatite

    No full text
    Volume: 2Start Page: 130End Page: 13

    Taxonomy and diversity of slit‐band gastropods (Order Pleurotomariida) and some slit bearing Caenogastropoda from the Pennsylvanian of the USA

    No full text
    Pleurotomariida have the longest fossil record among living gastropods and are diverse and abundant in the middle and upper Palaeozoic. Its traditional classification is based on adult shell characters. The early shell morphology has been largely unknown. We describe exceptionally well‐preserved Pleurotomariida from the Pennsylvanian marine shales of Texas, Oklahoma, Kansas and Ohio. In total, 38 species representing 19 genera are described, including 10 new species, one new genus and one new subgenus: Eirlysella buckhornensis gen. et sp. nov., Shansiella (Oklahomaella) globilineata subgen. et sp. nov., Phymatopleura girtyi, Phymatopleura conica, Worthenia (Yochelsonospira) kuesi, Dictyotomaria turrisbabel, Paragoniozona yanceyi, Spiroscala shwedagoniformis, Peruvispira oklahomaensis, Baylea tenera. Replacement names are Paragoniozona ornata nom. nov. (for Pleurotomaria aspera Girty), Spiroscala quasipulchra nom. nov. (for Euconospira pulchra Batten). The early ontogenetic shells including protoconchs and early teleoconchs are reported in detail for the first time for most taxa. Most species have a protoconch of one whorl as that of living Vetigastropoda. Planktotrophic protoconchs (multi‐whorled larval shells with sinusigera) are reported for Platyzona and Peruvispira; they are therefore placed in the family Goniasmatidae (Caenogastropoda). Repaired shell scars were found in juvenile Pleurotomariida specimens (c. 1 mm), suggesting exposure to predation from an early stage of ontogeny. Pleurotomariida are strongly dominant in surface samples of the Finis Shale (Texas) but in bulk samples using fine mesh‐sizes, dominance is much less pronounced, indicating a change in clade proportion depending on sampling method. The taxonomic richness and abundance of Pleurotomariida seen in these Carboniferous shales have not been reported from post‐Triassic formations.The Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/50110000165
    corecore