1,427 research outputs found

    The Origin of [O II] Emission in Recently Quenched Active Galaxy Nucleus Hosts

    Get PDF
    We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [O II] emission line observed in six active galactic nucleus (AGN) hosts at z ~ 0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [O II] emission. Examining the flux ratio of the [N II] to Hα lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [O II] line luminosity that could be generated by star formation alone given their Hα line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [O II] line flux. A comparison of star formation rates calculated from extinction-corrected [O II] and Hα line luminosities indicates that the former yields a five-fold overestimate of the current activity in these galaxies. Our findings reveal the [O II] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts is hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity may suggest that AGN feedback plays an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift

    The Violent Youth of Bright and Massive Cluster Galaxies and their Maturation over 7 Billion Years

    Get PDF
    In this study we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z∼0.9z\sim0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z∼0.1z\sim0.1) counterparts drawn from the MCXC meta-catalog, supplemented by SDSS imaging and spectroscopy. We observed striking differences in the morphological, color, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broadband colors, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51±0.712.51\pm0.71 from z∼0.9z\sim0.9 to z∼0.1z\sim0.1. Through this and other comparisons we conclude that a combination of major merging (mainly wet or mixed) and \emph{in situ} star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∼3\sim3, while their average S\'ersic index increased by ∼\sim0.45 from z∼0.9z\sim0.9 to z∼0.1z\sim0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∼\sim7 Gyr.Comment: Accepted for publication in MNRA

    Galaxy Groups Associated with Gravitational Lenses and H_0 from B1608+656

    Get PDF
    Compact groups of galaxies recently have been discovered in association with several strong gravitational lens systems. These groups provide additional convergence to the lensing potential and thus affect the value of H_0 derived from the systems. Lens system time delays are now being measured with uncertainties of only a few percent or better. Additionally, vast improvements are being made in incorporating observational constraints such as Einstein ring structures and stellar velocity dispersions into the lens models. These advances are reducing the uncertainties on H_0 to levels at which the the effects of associated galaxy groups may contribute significantly to the overall error budget. We describe a dedicated multiwavelength program, using Keck, HST, and Chandra, to find such groups and measure their properties. We present, as a case study, results obtained from observations of the CLASS lens system B1608+656 and discuss the implications for the value of H_0 derived from this system.Comment: To appear in Proceedings of IAU Symposium 225: Impact of Gravitational Lensing on Cosmology, 6 pages, 2 figure

    No Evidence of Quasar-Mode Feedback in a Four-Way Group Merger at z~0.84

    Get PDF
    We report on the results of a Chandra search for evidence of triggered nuclear activity within the Cl0023+0423 four-way group merger at z ~ 0.84. The system consists of four interacting galaxy groups in the early stages of hierarchical cluster formation and, as such, provides a unique look at the level of processing and evolution already under way in the group environment prior to cluster assembly. We present the number counts of X-ray point sources detected in a field covering the entire Cl0023 structure, as well as a cross-correlation of these sources with our extensive spectroscopic database. Both the redshift distribution and cumulative number counts of X-ray sources reveal little evidence to suggest that the system contains X-ray luminous active galactic nuclei (AGNs) in excess to what is observed in the field population. If preprocessing is under way in the Cl0023 system, our observations suggest that powerful nuclear activity is not the predominant mechanism quenching star formation and driving the evolution of Cl0023 galaxies. We speculate that this is due to a lack of sufficiently massive nuclear black holes required to power such activity, as previous observations have found a high late-type fraction among the Cl0023 population. It may be that disruptive AGN-driven outflows become an important factor in the preprocessing of galaxy populations only during a later stage in the evolution of such groups and structures when sufficiently massive galaxies (and central black holes) have built up, but prior to hydrodynamical processes stripping them of their gas reservoirs.Comment: Published in ApJ

    The Properties of Radio Galaxies and the Effect of Environment in Large Scale Structures at z∼1z\sim1

    Get PDF
    In this study we investigate 89 radio galaxies that are spectroscopically-confirmed to be members of five large scale structures in the redshift range of 0.65≤z≤0.960.65 \le z \le 0.96. Based on a two-stage classification scheme, the radio galaxies are classified into three sub-classes: active galactic nucleus (AGN), hybrid, and star-forming galaxy (SFG). We study the properties of the three radio sub-classes and their global and local environmental preferences. We find AGN hosts are the most massive population and exhibit quiescence in their star-formation activity. The SFG population has a comparable stellar mass to those hosting a radio AGN but are unequivocally powered by star formation. Hybrids, though selected as an intermediate population in our classification scheme, were found in almost all analyses to be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They are dominated by a high-excitation radio galaxy (HERG) population. We discuss environmental effects and scenarios for each sub-class. AGN tend to be preferentially located in locally dense environments and in the cores of clusters/groups, with these preferences persisting when comparing to galaxies of similar colour and stellar mass, suggesting that their activity may be ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit a strong preference for intermediate-density global environments, suggesting that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy interactions and merging.Comment: 28 pages, 10 figures, accepted to MNRA

    Chandra Observations of the Cl1604 Supercluster at z=0.9: Evidence for an Overdensity of Active Galactic Nuclei

    Get PDF
    We present the results of Chandra observations of the Cl1604 supercluster at z~0.9. The system is the largest structure mapped at redshifts approaching unity, containing at least eight spectroscopically confirmed galaxy clusters and groups. Using two 50-ksec ACIS-I pointings we examine both the X-ray point source population and the diffuse emission from individual clusters in the system. We find a 2.5\sigma excess of point sources detected in the hard band (2-10 keV) relative to the number of sources found in blank fields observed by Chandra. No such excess is observed in the soft band (0.5-2 keV). The hard-band source density is 1.47 times greater than that of a blank field, in agreement with the previously reported correlation between overdensity amplitude and cluster redshift. Using a maximum likelihood technique we have matched 112 of the 161 detected X-ray point sources to optical counterparts and found 15 sources that are associated with the supercluster. All 15 sources have rest-frame luminosities consistent with emission from active galactic nuclei (AGN). We find that the supercluster AGN largely avoid the densest regions of the system and are instead distributed on the outskirts of massive clusters or within poorer clusters and groups. We have also detected diffuse emission from two of the eight clusters and groups in the system, clusters Cl1604+4304 and Cl1604+4314. The systems have bolometric luminosities of 1.43x10^44 and 8.20x10^43 h70^-2 erg s^-1 and gas temperatures of 3.50 (+1.82-1.08) and 1.64 (+0.65-0.45) keV, respectively. Using updated velocity dispersions, we compare the properties of these systems to the cluster scaling relations followed by other X-ray and optically selected galaxy clusters at high redshift.Comment: 24 pages, 14 figures, submitted to Ap

    Participatory budgeting design for the real world

    Full text link
    Participatory budgeting engages the public in the process of allocating public money to different types of projects. PB designs differ in how voters are asked to express their preferences over candidate projects and how these preferences are aggregated to determine which projects to fund. This paper studies two fundamental questions in PB design. Which voting format and aggregation method to use, and how to evaluate the outcomes of these design decisions? We conduct an extensive empirical study in which 1 800 participants vote in four participatory budgeting elections in a controlled setting to evaluate the practical effects of the choice of voting format and aggregation rule. We find that k-approval leads to the best user experience. With respect to the aggregation rule, greedy aggregation leads to outcomes that are highly sensitive to the input format used and the fraction of the population that participates. The method of equal shares, in contrast, leads to outcomes that are not sensitive to the type of voting format used, and these outcomes are remarkably stable even when the majority of the population does not participate in the election. These results carry valuable insights for PB practitioners and social choice researchers.http://www.gerdusbenade.com/files/22_pb_stability.pdfAccepted manuscrip
    • …
    corecore