30 research outputs found

    Synergistic reinforcement of a reversible Diels-Alder type network with nanocellulose

    Get PDF
    Covalent adaptable networks are attractive intermediates between thermosets and thermoplastics. To achieve an optimal combination of dimensional stability at the temperature of use and macroscopic flow at elevated temperatures, materials that combine two reversible networks are highly sought after. We demonstrate that such a material can be created through the addition of cellulose microfibrils to a polymer matrix that can undergo thermoreversible Diels-Alder reactions. The cellulose microfibrils and crosslinked polymer form two independent reversible networks that display clear synergistic effects on the thermomechanical properties of the nanocomposite. Above the glass transition temperature of the polymer matrix the two networks work in tandem to reduce tensile creep by a factor of 40 at 80 degrees C, while increasing the storage modulus by a factor of 60 at the same temperature. The adaptability of the Diels-Alder network is not compromised by the addition of cellulose microfibrils, as shown by kinetic studies and repeated reprocessing. Further, the cellulose network significantly improves the dimensional stability at elevated temperatures where the Diels-Alder network dissociates

    Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge

    Get PDF
    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion

    Renewable (Bis)pyrrolidone Based Monomers as Components for Thermally Curable and Enzymatically Depolymerizable 2-Oxazoline Thermoset Resins

    No full text
    In this study we describe the synthesis of bis(pyrrolidone) based dicarboxylic acids from itaconic acid and their application in 2-oxazoline resins for fully renewable thermoset materials. The monomers are obtained using a bulk aza-Michael addition of a diamine and two itaconic acid molecules using a catalytic amount of water. The monomers can be isolated in high purity after recrystallization, though their yield proved to be highly dependent on the selected diamine spacer length: In general, only the dicarboxylic acids containing diamines with an even number of methylene spacers are isolated in high yields. Through NMR, GPC, and FTIR analysis we demonstrate that these bis(pyrrolidone) based dicarboxylic acids exhibit significantly enhanced curing rates in 2-oxazoline resins compared to resins containing aliphatic dicarboxylic acids such as sebacic acid. Overall, we demonstrate that the rate of 2-oxazoline ring-opening addition with carboxylic acid functionalities is determined by the used dicarboxylic acid, whereas the ring-opening addition of the 2-oxazoline functionality with amide groups is determined by the used bis(2-oxazoline) compound. The thermosets obtained after curing proved to be readily plasticized by water, opening up possibilities for enzymatic degradation

    Renewable (Bis)pyrrolidone Based Monomers as Components for Thermally Curable and Enzymatically Depolymerizable 2-Oxazoline Thermoset Resins

    No full text
    In this study we describe the synthesis of bis(pyrrolidone) based dicarboxylic acids from itaconic acid and their application in 2-oxazoline resins for fully renewable thermoset materials. The monomers are obtained using a bulk aza-Michael addition of a diamine and two itaconic acid molecules using a catalytic amount of water. The monomers can be isolated in high purity after recrystallization, though their yield proved to be highly dependent on the selected diamine spacer length: In general, only the dicarboxylic acids containing diamines with an even number of methylene spacers are isolated in high yields. Through NMR, GPC, and FTIR analysis we demonstrate that these bis(pyrrolidone) based dicarboxylic acids exhibit significantly enhanced curing rates in 2-oxazoline resins compared to resins containing aliphatic dicarboxylic acids such as sebacic acid. Overall, we demonstrate that the rate of 2-oxazoline ring-opening addition with carboxylic acid functionalities is determined by the used dicarboxylic acid, whereas the ring-opening addition of the 2-oxazoline functionality with amide groups is determined by the used bis(2-oxazoline) compound. The thermosets obtained after curing proved to be readily plasticized by water, opening up possibilities for enzymatic degradation

    Automated diabetic retinopathy imaging in Indian eyes: A pilot study

    No full text
    Aim: To evaluate the efficacy of an automated retinal image grading system in diabetic retinopathy (DR) screening. Materials and Methods: Color fundus images of patients of a DR screening project were analyzed for the purpose of the study. For each eye two set of images were acquired, one centerd on the disk and the other centerd on the macula. All images were processed by automated DR screening software (Retmarker). The results were compared to ophthalmologist grading of the same set of photographs. Results: 5780 images of 1445 patients were analyzed. Patients were screened into two categories DR or no DR. Image quality was high, medium and low in 71 (4.91%), 1117 (77.30%) and 257 (17.78%) patients respectively. Specificity and sensitivity for detecting DR in the high, medium and low group were (0.59, 0.91); (0.11, 0.95) and (0.93, 0.14). Conclusion: Automated retinal image screening system for DR had a high sensitivity in high and medium quality images. Automated DR grading software′s hold promise in future screening programs

    Improving the Hydrolysis Rate of the Renewable Poly(hexamethylene sebacate) Through Copolymerization of a Bis(pyrrolidone)-Based Dicarboxylic Acid

    No full text
    In this work, we report on the synthesis of a series of polyesters based on 1,6-hexanediol, sebacic acid, and N,N'-dimethylene-bis(pyrrolidone-4-carboxylic acid) (BP-C-2), of which the latter is derived from renewable itaconic acid and 1,2-ethanediamine. Copolymers with a varying amount of BP-C-2 as dicarboxylic acid are synthesized using a melt-polycondensation reaction with the aim of controlling the hydrolysis rate of the polymers in water or under bioactive conditions. We demonstrate that the introduction of BP-C-2 in the polymer backbone does not limit the molecular weight build-up, as polymers with a weight average molecular weight close to 20 kg/mol and higher are obtained. Additionally, as the BP-C-2 moiety is excluded from the crystal structure of poly(hexamethylene sebacate), the increase in BP-C-2 concentration effectively results in a suppression in both melting temperature and crystallinity of the polymers. Overall, we demonstrate that the BP-C-2 moiety enhances the polymer's affinity to water, effectively improving the water uptake and rate of hydrolysis, both in demineralized water and in the presence of a protease from Bacillus licheniformis
    corecore