6 research outputs found

    Hydroclimatological perspective of the Kerala flood of 2018

    No full text
    Flood is among the deadliest disasters in India, and the frequency of floods and extreme precipitation events is projected to increase under the warming climate. The frequency of floods in India varies geographically as some regions are more prone to floods than the others. The Kerala flood of 2018 caused enormous economic damage, affected millions of people, and resulted in the death of more than 400 people. Here we provide a hydroclimatological perspective on the Kerala flood of 2018. Using the observations and model simulations from the Variable Infiltration Capacity (VIC) model, we show that the 2018 extreme precipitation and runoff conditions that caused flooding were unprecedented in the record of the past 66 years (1951–2017). Our results show that mean monsoon precipitation has significantly declined while air temperature has significantly increased during 1951–2017 in Kerala. The drying and warming trends during the monsoon season resulted in a declined total runoff in large part of the state in the last 66 years. Apart from the mean hydroclimatic conditions, extreme precipitation, and extreme total runoff have also declined from 1951 to 2017. However, 1 and 2-day extreme precipitation and extreme runoff conditions in August 2018 exceeded substantially from the long-term 95th percentiles recorded during 1951–2017. Since there is no increase in mean and extreme precipitation in Kerala over the last six decades, the extreme event during August 2018 is likely to be driven by anomalous atmospheric conditions due to climate variability rather anthropogenic climate warming. The severity of the Kerala flood of 2018 and the damage caused might be affected by several factors including land use/land cover change, antecedent hydrologic conditions, reservoir storage and operations, encroachment of flood plains, and other natural factors. The impacts of key drivers (anthropogenic and natural) on flood severity need to be established to improve our understanding of floods and associated damage.by Vimal Mishra and Harsh L. Sha

    A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific Knowledge and Societal Needs

    Get PDF
    International audienceThe Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientific and societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS
    corecore