5 research outputs found

    Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors

    Get PDF
    Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the U.S. alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED[subscript 50] of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3CL protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles, α-ketoesters, and others

    Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors

    Get PDF
    A class of tripeptidyl transition state inhibitors containing a P1 glutamine surrogate, a P2 leucine, and a P3 arylalanines, was found to potently inhibit Norwalk virus replication in enzyme and cell based assays. An array of warheads, including aldehyde, α-ketoamide, bisulfite adduct, and α-hydroxyphosphonate transition state mimic, was also investigated. Tripeptidyls 2 and 6 possess antiviral activities against noroviruses, human rhinovirus, severe acute respiratory syndrome coronavirus, and coronavirus 229E, suggesting a broad range of antiviral activities

    Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus

    Get PDF
    The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 μM, respectively
    corecore