192 research outputs found
Statistical mechanics of a colloidal suspension in contact with a fluctuating membrane
Surface effects are generally prevailing in confined colloidal systems. Here
we report on dispersed nanoparticles close to a fluid membrane. Exact results
regarding the static organization are derived for a dilute solution of
non-adhesive colloids. It is shown that thermal fluctuations of the membrane
broaden the density profile, but on average colloids are neither accumulated
nor depleted near the surface. The radial correlation function is also
evaluated, from which we obtain the effective pair-potential between colloids.
This entropically-driven interaction shares many similarities with the familiar
depletion interaction. It is shown to be always attractive with range
controlled by the membrane correlation length. The depth of the potential well
is comparable to the thermal energy, but depends only indirectly upon membrane
rigidity. Consequenses for stability of the suspension are also discussed
Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics
The hydrodynamic phase field model is applied to the problem of film
spreading on a solid surface. The disjoining potential, responsible for
modification of the fluid properties near a three-phase contact line, is
computed from the solvability conditions of the density field equation with
appropriate boundary conditions imposed on the solid support. The equation
describing the motion of a spreading film are derived in the lubrication
approximation. In the case of quasi-equilibrium spreading, is shown that the
correct sharp-interface limit is obtained, and sample solutions are obtained by
numerical integration. It is further shown that evaporation or condensation may
strongly affect the dynamics near the contact line, and accounting for kinetic
retardation of the interphase transport is necessary to build up a consistent
theory.Comment: 14 pages, 5 figures, to appear in PR
Broad Spectrum Enantioselective Amide Bond Synthetase from Streptoalloteichus hindustanus
The synthesis of amide bonds is one of the most frequently performed reactions in pharmaceutical synthesis, but the requirement for stoichiometric quantities of coupling agents and activated substrates in established methods has prompted interest in biocatalytic alternatives. Amide Bond Synthetases (ABSs) actively catalyze both the ATP-dependent adenylation of carboxylic acid substrates and their subsequent amidation using an amine nucleophile, both within the active site of the enzyme, enabling the use of only a small excess of the amine partner. We have assessed the ability of an ABS from Streptoalloteichus hindustanus (ShABS) to couple a range of carboxylic acid substrates and amines to form amine products. ShABS displayed superior activity to a previously studied ABS, McbA, and a remarkable complementary substrate specificity that included the enantioselective formation of a library of amides from racemic acid and amine coupling partners. The X-ray crystallographic structure of ShABS has permitted mutational mapping of the carboxylic acid and amine binding sites, revealing key roles for L207 and F246 in determining the enantioselectivity of the enzyme with respect to chiral acid and amine substrates. ShABS was applied to the synthesis of pharmaceutical amides, including ilepcimide, lazabemide, trimethobenzamide, and cinepazide, the last with 99% conversion and 95% isolated yield. These findings provide a blueprint for enabling a contemporary pharmaceutical synthesis of one of the most significant classes of small molecule drugs using biocatalysis
Analysis of a three-component model phase diagram by Catastrophe Theory: Potentials with two Order Parameters
In this work we classify the singularities obtained from the Gibbs potential
of a lattice gas model with three components, two order parameters and five
control parameters applying the general theorems provided by Catastrophe
Theory. In particular, we clearly establish the existence of Landau potentials
in two variables or, in other words, corank 2 canonical forms that are
associated to the hyperbolic umbilic, D_{+4}, its dual the elliptic umbilic,
D_{-4}, and the parabolic umbilic, D_5, catastrophes. The transversality of the
potential with two order parameters is explicitely shown for each case. Thus we
complete the Catastrophe Theory analysis of the three-component lattice model,
initiated in a previous paper.Comment: 17 pages, 3 EPS figures, Latex file, continuation of Phys. Rev. B57,
13527 (1998) (cond-mat/9707015), submitted to Phys. Rev.
The liquid-vapor interface of an ionic fluid
We investigate the liquid-vapor interface of the restricted primitive model
(RPM) for an ionic fluid using a density-functional approximation based on
correlation functions of the homogeneous fluid as obtained from the
mean-spherical approximation (MSA). In the limit of a homogeneous fluid our
approach yields the well-known MSA (energy) equation of state. The ionic
interfacial density profiles, which for the RPM are identical for both species,
have a shape similar to those of simple atomic fluids in that the decay towards
the bulk values is more rapid on the vapor side than on the liquid side. This
is the opposite asymmetry of the decay to that found in earlier calculations
for the RPM based on a square-gradient theory. The width of the interface is,
for a wide range of temperatures, approximately four times the second moment
correlation length of the liquid phase. We discuss the magnitude and
temperature dependence of the surface tension, and argue that for temperatures
near the triple point the ratio of the dimensionless surface tension and
critical temperature is much smaller for the RPM than for simple atomic fluids.Comment: 6 postscript figures, submitted to Phys. Rev.
A new approach for the limit to tree height using a liquid nanolayer model
Liquids in contact with solids are submitted to intermolecular forces
inferring density gradients at the walls. The van der Waals forces make liquid
heterogeneous, the stress tensor is not any more spherical as in homogeneous
bulks and it is possible to obtain stable thin liquid films wetting vertical
walls up to altitudes that incompressible fluid models are not forecasting.
Application to micro tubes of xylem enables to understand why the ascent of sap
is possible for very high trees like sequoias or giant eucalyptus.Comment: In the conclusion is a complementary comment to the Continuum
Mechanics and Thermodynamics paper. 21 pages, 4 figures. Continuum Mechanics
and Thermodynamics 20, 5 (2008) to appea
Monte Carlo simulation of subsurface ordering kinetics in an fcc-alloy model
Within the atom-vacancy exchange mechanism in a nearest-neighbor interaction
model we investigate the kinetics of surface-induced ordering processes close
to the (001) surface of an fcc A_3B-alloy. After a sudden quench into the
ordered phase with a final temperature above the ordering spinodal, T_f > T_sp,
the early time kinetics is dominated by a segregation front which propagates
into the bulk with nearly constant velocity. Below the spinodal, T_f < T_sp,
motion of the segregation wave reflects a coarsening process which appears to
be slower than predicted by the Lifschitz-Allen-Cahn law. In addition, in the
front-penetrated region lateral growth differs distinctly from perpendicular
growth, as a result of the special structure of antiphase boundaries near the
surface. Our results are compared with recent experiments on the subsurface
ordering kinetics at Cu_3Au (001).Comment: 10 pages, 9 figures, submitted to Phys. Rev. B, in prin
Shapes, contact angles, and line tensions of droplets on cylinders
Using an interface displacement model we calculate the shapes of
nanometer-size liquid droplets on homogeneous cylindrical surfaces. We
determine effective contact angles and line tensions, the latter defined as
excess free energies per unit length associated with the two contact lines at
the ends of the droplet. The dependences of these quantities on the cylinder
radius and on the volume of the droplets are analyzed.Comment: 26 pages, RevTeX, 10 Figure
- …