research

Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics

Abstract

The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is computed from the solvability conditions of the density field equation with appropriate boundary conditions imposed on the solid support. The equation describing the motion of a spreading film are derived in the lubrication approximation. In the case of quasi-equilibrium spreading, is shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the contact line, and accounting for kinetic retardation of the interphase transport is necessary to build up a consistent theory.Comment: 14 pages, 5 figures, to appear in PR

    Similar works

    Full text

    thumbnail-image

    Available Versions