99 research outputs found

    Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)

    Get PDF
    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Vitamin C Enhances Vitamin E Status and Reduces Oxidative Stress Indicators in Sea Bass Larvae Fed High DHA Microdiets

    Get PDF
    Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (α-tocopherol, α-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5 % DW) and α-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1 % DHA DW and 1,500 mg/kg of α-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased α-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets

    Differentiation and growth of muscle in the fish Sparus aurata (L.): II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult.

    No full text
    Post-hatching growth of lateral muscle in a teleost fish, Sparus aurata (L) was studied morphometrically to identify and quantify muscle fibre hyperplasia and hypertrophy, and by in vivo nuclear labelling with 5-bromo-deoxyuridine to identify areas of myoblast proliferation. Muscle fibre types were identified principally by myosin ATPase histochemistry and immunostaining, and labelled nuclei were identified at light and electronmicroscope level by immunostaining with a specific monoclonal antibody. Hyperplastic growth was slow at hatching, but then increased to a maximum at the mid-point of larval life. Larval hyperplastic growth occured by apposition of new fibres along proliferation zones, principally just under the lateral line and in the apical regions of the myotome, but also just under the superficial monolayer at intermediate positions. The first of these zones gave rise to slow and pink muscle fibres, in a process which continued through into postlarval life. The other zones added new fibres to the fast-white muscle layer in a process which was exhausted by the end of larval life. Post-larvally, between 60 and 90 days posthatching, a new hyperplastic process started in the fast-white muscle as nuclei proliferated and new muscle fibres were formed throughout the whole layer. This process resulted in a several-fold increase in the number of fast-white fibres over a few weeks, and then waned to very low levels in juveniles. Hyperplasia by apposition continued for some time postlarvally on the deep surface of the superficial monolayer, but at this stage gave rise to slow fibres only. Hypertrophic growth occurred at all ages, but was the dominant mechanism of muscle growth only in the juvenile and adult stages. Mechanisms giving rise to these different growth processes in fish muscle are discussed, and compared with muscle development in higher vertebrates
    corecore