231 research outputs found

    Neuron arbor geometry is sensitive to the limited-range fractal properties of their dendrites

    Get PDF
    12 pagesFractal geometry is a well-known model for capturing the multi-scaled complexity of many natural objects. By analyzing three-dimensional images of pyramidal neurons in the rat hippocampus CA1 region, we examine how the individual dendrites within the neuron arbor relate to the fractal properties of the arbor as a whole. We find that the dendrites reveal unexpectedly mild fractal characteristics quantified by a low fractal dimension. This is confirmed by comparing two fractal methods—a traditional “coastline” method and a novel method that examines the dendrites’ tortuosity across multiple scales. This comparison also allows the dendrites’ fractal geometry to be related to more traditional measures of their complexity. In contrast, the arbor’s fractal characteristics are quantified by a much higher fractal dimension. Employing distorted neuron models that modify the dendritic patterns, deviations from natural dendrite behavior are found to induce large systematic changes in the arbor’s structure and its connectivity within a neural network. We discuss how this sensitivity to dendrite fractality impacts neuron functionality in terms of balancing neuron connectivity with its operating costs. We also consider implications for applications focusing on deviations from natural behavior, including pathological conditions and investigations of neuron interactions with artificial surfaces in human implants

    Microbially mediated reduction of FeIII and AsV in Cambodian sediments amended with 13C-labelled hexadecane and kerogen

    Get PDF
    Microbial activity is generally accepted to play a critical role, with the aid of suitable organic carbon substrates, in the mobilisation of arsenic from sediments into shallow reducing groundwaters. The nature of the organic matter in natural aquifers driving the reduction of AsV to AsIII is of particular importance but is poorly understood. In this study, sediments from an arsenic rich aquifer in Cambodia were amended with two 13C-labelled organic substrates. 13C-hexadecane was used as a model for potentially bioavailable long chain n-alkanes and a 13C-kerogen analogue as a proxy for non-extractable organic matter. During anaerobic incubation for 8 weeks, significant FeIII reduction and AsIII mobilisation were observed in the biotic microcosms only, suggesting that these processes were microbially driven. Microcosms amended with 13C-hexadecane exhibited a similar extent of FeIII reduction to the non-amended microcosms, but marginally higher AsIII release. Moreover, gas chromatography–mass spectrometry analysis showed that 65 % of the added 13C-hexadecane was degraded during the 8-week incubation. The degradation of 13C-hexadecane was microbially driven, as confirmed by DNA stable isotope probing (DNA-SIP). Amendment with 13C-kerogen did not enhance FeIII reduction or AsIII mobilisation, and microbial degradation of kerogen could not be confirmed conclusively by DNA-SIP fractionation or 13C incorporation in the phospholipid fatty acids. These data are, therefore, consistent with the utilisation of long chain n-alkanes (but not kerogen) as electron donors for anaerobic processes, potentially including FeIII and AsV reduction in the subsurface

    Investigating Fractal Analysis as a Diagnostic Tool That Probes the Connectivity of Hippocampal Neurons

    Get PDF
    12 pagesMany of nature’s fractal objects benefit from the favorable functionality that results from their pattern repetition at multiple scales. Our recent research focused on the importance of fractal scaling in establishing connectivity between neurons. Fractal dimension DA of the neuron arbors was shown to relate to the optimization of competing functional constraints—the ability of dendrites to connect to other neurons versus the costs associated with building the dendrites. Here, we consider whether pathological states of neurons might affect this fractal optimization and if changes in DA might therefore be used as a diagnostic tool in parallel with traditional measures like Sholl analyses. We use confocal microscopy to obtain images of CA1 pyramidal neurons in the coronal plane of the dorsal rat hippocampus and construct 3-dimensional models of the dendritic arbors using Neurolucida software. We examine six rodent groups which vary in brain condition (whether they had lesions in the anterior thalamic nuclei, ATN) and experience (their housing environment and experience in a spatial task). Previously, we showed ATN lesions reduced spine density in hippocampal CA1 neurons, whereas enriched housing increased spine density in both ATN lesion and sham rats. Here, we investigate whether ATN lesions and experience also effect the complexity and connectivity of CA1 dendritic arbors. We show that sham rats exposed to enriched housing and spatial memory training exhibited higher complexity (as measured by DA) and connectivity compared to other groups. When we categorize the rodent groups into those with or without lesions, we find that both categories achieve an optimal balance of connectivity with respect to material cost. However, the DA value used to achieve this optimization does not change between these two categories, suggesting any morphological differences induced by the lesions are too small to influence the optimization process. Accordingly, we highlight considerations associated with applying our technique to publicly accessible repositories of neuron images with a broader range of pathological conditions

    Physical Guidance of Cultured Retinal Neurons Using Zig-zag Surface Patterns

    Get PDF
    3 pagesThe use of physical cues to control and guide various types of cells in vitro, especially neurons and their processes, has been the focus of a large amount of research. The response of neuronal processes to artificial surfaces depends on a number of factors including the cell type, the surface chemistry of the material, and the surface’s topological features [1,2]. In this Opinion piece, we investigate the extent to which retinal neuronal processes can be made to follow straight lines patterned into a surface. We show they can follow lines with relatively shallow heights of 2 ÎŒm and be made to undergo directional changes as great as 50°. However, some processes leave the lines and assume a weaving trajectory as they grow into the surface’s unpatterned regions. Based on these findings, we propose that neuronal processes will follow lines more closely if their shapes mimic the fractal weave patterns of unrestricted neurons. In addition to exploring the fundamental behavior of neurons interacting with artificial surfaces, the results inform the design of bio-inspired electrodes for human implants.RPT is a Cottrell Scholar of the Research Council for Science Advancement. This research is supported by the WM Keck Foundation (RPT) and The Swedish Research Council (M.-T.P.: 2016-03757), Crown Princess Margareta’s Committee for the Blind, Stiftelse för Synskadade i fd Malmöhus LĂ€n and the Crafoordska Stiftelsen

    Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Get PDF
    BACKGROUND: Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05). Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the potential to serve as a strategy for managing insecticide resistance

    Long-Lasting Control of Anopheles arabiensis by a Single Spray Application of Micro-encapsulated Pirimiphos-methyl (Actellic(R) 300 CS).

    Get PDF
    Pyrethroid-resistant mosquitoes are an increasing threat to malaria vector control. The Global Plan for Insecticide Resistance Management (GPIRM) recommends rotation of non-pyrethroid insecticides for indoor residual spraying (IRS). The options from other classes are limited. The carbamate bendiocarb and the organophosphate pirimiphos-methyl (p-methyl) emulsifiable concentrate (EC) have a short residual duration of action, resulting in increased costs due to multiple spray cycles, and user fatigue. Encapsulation (CS) technology was used to extend the residual performance of p-methyl. Two novel p-methyl CS formulations were evaluated alongside the existing EC in laboratory bioassays and experimental hut trials in Tanzania between 2008-2010. Bioassays were carried out monthly on sprayed substrates of mud, concrete, plywood, and palm thatch to assess residual activity. Experimental huts were used to assess efficacy against wild free-flying Anopheles arabiensis, in terms of insecticide-induced mortality and blood-feeding inhibition. In laboratory bioassays of An. arabiensis and Culex quinquefasciatus both CS formulations produced high rates of mortality for significantly longer than the EC formulation on all substrates. On mud, the best performing CS killed >80% of An. arabiensis for five months and >50% for eight months, compared with one and two months, respectively, for the EC. In monthly bioassays of experimental hut walls the EC was ineffective shortly after spraying, while the best CS formulation killed more than 80% of An. arabiensis for five months on mud, and seven months on concrete. In experimental huts both CS and EC formulations killed high proportions of free-flying wild An. arabiensis for up to 12 months after spraying. There was no significant difference between treatments. All treatments provided considerable personal protection, with blood-feeding inhibition ranging from 9-49% over time. The long residual performance of p-methyl CS was consistent in bioassays and experimental huts. The CS outperformed the EC in laboratory and hut bioassays but the EC longevity in huts was unexpected. Long-lasting p-methyl CS formulations should be more effective than both p-methyl EC and bendiocarb considering a single spray could be sufficient for annual malaria control. IRS with p-methyl 300 CS is a timely addition to the limited portfolio of long-lasting residual insecticides

    Alcohol consumption and sport: a cross-sectional study of alcohol management practices associated with at-risk alcohol consumption at community football clubs

    Get PDF
    BackgroundExcessive alcohol consumption is responsible for considerable harm from chronic disease and injury. Within most developed countries, members of sporting clubs participate in at-risk alcohol consumption at levels above that of communities generally. There has been limited research investigating the predictors of at-risk alcohol consumption in sporting settings, particularly at the non-elite level. The purpose of this study was to examine the association between the alcohol management practices and characteristics of community football clubs and at-risk alcohol consumption by club members.MethodsA cross sectional survey of community football club management representatives and members was conducted. Logistic regression analysis (adjusting for clustering by club) was used to determine the association between the alcohol management practices (including alcohol management policy, alcohol-related sponsorship, availability of low- and non-alcoholic drinks, and alcohol-related promotions, awards and prizes) and characteristics (football code, size and location) of sporting clubs and at-risk alcohol consumption by club members.ResultsMembers of clubs that served alcohol to intoxicated people [OR: 2.23 (95% CI: 1.26-3.93)], conducted &lsquo;happy hour&rsquo; promotions [OR: 2.84 (95% CI: 1.84-4.38)] or provided alcohol-only awards and prizes [OR: 1.80 (95% CI: 1.16-2.80)] were at significantly greater odds of consuming alcohol at risky levels than members of clubs that did not have such alcohol management practices. At-risk alcohol consumption was also more likely among members of clubs with less than 150 players compared with larger clubs [OR:1.45 (95% CI: 1.02-2.05)] and amongst members of particular football codes.ConclusionsThe findings of this study suggest a need and opportunity for the implementation of alcohol harm reduction strategies targeting specific alcohol management practices at community football clubs.<br /
    • 

    corecore