7,528 research outputs found

    Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Analysis and results

    Get PDF
    Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs

    Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Computer program description

    Get PDF
    A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated

    Unitarity potentials and neutron matter at the unitary limit

    Full text link
    We study the equation of state of neutron matter using a family of unitarity potentials all of which are constructed to have infinite 1S0^1S_0 scattering lengths asa_s. For such system, a quantity of much interest is the ratio ξ=E0/E0free\xi=E_0/E_0^{free} where E0E_0 is the true ground-state energy of the system, and E0freeE_0^{free} is that for the non-interacting system. In the limit of as±a_s\to \pm \infty, often referred to as the unitary limit, this ratio is expected to approach a universal constant, namely ξ0.44(1)\xi\sim 0.44(1). In the present work we calculate this ratio ξ\xi using a family of hard-core square-well potentials whose asa_s can be exactly obtained, thus enabling us to have many potentials of different ranges and strengths, all with infinite asa_s. We have also calculated ξ\xi using a unitarity CDBonn potential obtained by slightly scaling its meson parameters. The ratios ξ\xi given by these different unitarity potentials are all close to each other and also remarkably close to 0.44, suggesting that the above ratio ξ\xi is indifferent to the details of the underlying interactions as long as they have infinite scattering length. A sum-rule and scaling constraint for the renormalized low-momentum interaction in neutron matter at the unitary limit is discussed.Comment: 7.5 pages, 7 figure

    Control of trapped-ion quantum states with optical pulses

    Get PDF
    We present new results on the quantum control of systems with infinitely large Hilbert spaces. A control-theoretic analysis of the control of trapped ion quantum states via optical pulses is performed. We demonstrate how resonant bichromatic fields can be applied in two contrasting ways -- one that makes the system completely uncontrollable, and the other that makes the system controllable. In some interesting cases, the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schr\"{o}dinger equation controllable via bichromatic resonant pulses. Extending this analysis to the quantum states of two ions, a new scheme for producing entangled qubits is discovered.Comment: Submitted to Physical Review Letter

    Better Bell Inequality Violation by Collective Measurements

    Get PDF
    The standard Bell inequality experiments test for violation of local realism by repeatedly making local measurements on individual copies of an entangled quantum state. Here we investigate the possibility of increasing the violation of a Bell inequality by making collective measurements. We show that nonlocality of bipartite pure entangled states, quantified by their maximal violation of the Bell-Clauser-Horne inequality, can always be enhanced by collective measurements, even without communication between the parties. For mixed states we also show that collective measurements can increase the violation of Bell inequalities, although numerical evidence suggests that the phenomenon is not common as it is for pure states.Comment: 7 pages, 4 figures and 1 table; references update

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Observations of Cepheids with the MOST satellite: Contrast between Pulsation Modes

    Get PDF
    The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadian MOST satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modeled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O-C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short timescales.Comment: accepted in MNRAS, 11 pages, 10 figure

    Trapped-Ion Quantum Simulator: Experimental Application to Nonlinear Interferometers

    Get PDF
    We show how an experimentally realized set of operations on a single trapped ion is sufficient to simulate a wide class of Hamiltonians of a spin-1/2 particle in an external potential. This system is also able to simulate other physical dynamics. As a demonstration, we simulate the action of an nn-th order nonlinear optical beamsplitter. Two of these beamsplitters can be used to construct an interferometer sensitive to phase shifts in one of the interferometer beam paths. The sensitivity in determining these phase shifts increases linearly with nn, and the simulation demonstrates that the use of nonlinear beamsplitters (nn=2,3) enhances this sensitivity compared to the standard quantum limit imposed by a linear beamsplitter (nn=1)
    corecore