15,331 research outputs found

    An equations-of-motion approach to quantum mechanics: application to a model phase transition

    Get PDF
    We present a generalized equations-of-motion method that efficiently calculates energy spectra and matrix elements for algebraic models. The method is applied to a 5-dimensional quartic oscillator that exhibits a quantum phase transition between vibrational and rotational phases. For certain parameters, 10 by 10 matrices give better results than obtained by diagonalising 1000 by 1000 matrices.Comment: 4 pages, 1 figur

    Quasi dynamical symmetry in an interacting boson model phase transition

    Full text link
    The oft-observed persistence of symmetry properties in the face of strong symmetry-breaking interactions is examined in the SO(5)-invariant interacting boson model. This model exhibits a transition between two phases associated with U(5) and O(6) symmetries, respectively, as the value of a control parameter progresses from 0 to 1. The remarkable fact is that, for intermediate values of the control parameter, the model states exhibit the characteristics of its closest symmetry limit for all but a relatively narrow transition region that becomes progressively narrower as the particle number of the model increases. This phenomenon is explained in terms of quasi-dynamical symmetry.Comment: 4 figure

    On giant piezoresistance effects in silicon nanowires and microwires

    Full text link
    The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon

    Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Analysis and results

    Get PDF
    Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs

    An exactly solvable model of a superconducting to rotational phase transition

    Full text link
    We consider a many-fermion model which exhibits a transition from a superconducting to a rotational phase with variation of a parameter in its Hamiltonian. The model has analytical solutions in its two limits due to the presence of dynamical symmetries. However, the symmetries are basically incompatible with one another; no simple solution exists in intermediate situations. Exact (numerical) solutions are possible and enable one to study the behavior of competing but incompatible symmetries and the phase transitions that result in a semirealistic situation. The results are remarkably simple and shed light on the nature of phase transitions.Comment: 11 pages including 1 figur
    • …
    corecore