1,935 research outputs found
Conclusive quantum steering with superconducting transition edge sensors
Quantum steering allows two parties to verify shared entanglement even if one
measurement device is untrusted. A conclusive demonstration of steering through
the violation of a steering inequality is of considerable fundamental interest
and opens up applications in quantum communication. To date all experimental
tests with single photon states have relied on post-selection, allowing
untrusted devices to cheat by hiding unfavourable events in losses. Here we
close this "detection loophole" by combining a highly efficient source of
entangled photon pairs with superconducting transition edge sensors. We achieve
an unprecedented ~62% conditional detection efficiency of entangled photons and
violate a steering inequality with the minimal number of measurement settings
by 48 standard deviations. Our results provide a clear path to practical
applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published
in Nature Communications, see below. Also, see related experimental work by
A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076
Degradation of a quantum directional reference frame as a random walk
We investigate if the degradation of a quantum directional reference frame
through repeated use can be modeled as a classical direction undergoing a
random walk on a sphere. We demonstrate that the behaviour of the fidelity for
a degrading quantum directional reference frame, defined as the average
probability of correctly determining the orientation of a test system, can be
fit precisely using such a model. Physically, the mechanism for the random walk
is the uncontrollable back-action on the reference frame due to its use in a
measurement of the direction of another system. However, we find that the
magnitude of the step size of this random walk is not given by our classical
model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to
clarify the key results. v3: journal reference added, acknowledgements and
references update
Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle
gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle
Profiles of physical, emotional and psychosocial wellbeing in the Lothian birth cohort 1936
<p>Abstract</p> <p>Background</p> <p>Physical, emotional, and psychosocial wellbeing are important domains of function. The aims of this study were to explore the existence of separable groups among 70-year olds with scores representing physical function, perceived quality of life, and emotional wellbeing, and to characterise any resulting groups using demographic, personality, cognition, health and lifestyle variables.</p> <p>Methods</p> <p>We used latent class analysis (LCA) to identify possible groups.</p> <p>Results</p> <p>Results suggested there were 5 groups. These included High (n = 515, 47.2% of the sample), Average (n = 417, 38.3%), and Poor Wellbeing (n = 37, 3.4%) groups. The two other groups had contrasting patterns of wellbeing: one group scored relatively well on physical function, but low on emotional wellbeing (Good Fitness/ Low Spirits,n = 60, 5.5%), whereas the other group showed low physical function but relatively well emotional wellbeing (Low Fitness/Good Spirits, n = 62, 5.7%). Salient characteristics that distinguished all the groups included smoking and drinking behaviours, personality, and illness.</p> <p>Conclusions</p> <p>Despite there being some evidence of these groups, the results also support a largely one-dimensional construct of wellbeing in old age—for the domains assessed here—though with some evidence that some individuals have uneven profiles.</p
No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies
Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
Hierarchy measure for complex networks
Nature, technology and society are full of complexity arising from the
intricate web of the interactions among the units of the related systems (e.g.,
proteins, computers, people). Consequently, one of the most successful recent
approaches to capturing the fundamental features of the structure and dynamics
of complex systems has been the investigation of the networks associated with
the above units (nodes) together with their relations (edges). Most complex
systems have an inherently hierarchical organization and, correspondingly, the
networks behind them also exhibit hierarchical features. Indeed, several papers
have been devoted to describing this essential aspect of networks, however,
without resulting in a widely accepted, converging concept concerning the
quantitative characterization of the level of their hierarchy. Here we develop
an approach and propose a quantity (measure) which is simple enough to be
widely applicable, reveals a number of universal features of the organization
of real-world networks and, as we demonstrate, is capable of capturing the
essential features of the structure and the degree of hierarchy in a complex
network. The measure we introduce is based on a generalization of the m-reach
centrality, which we first extend to directed/partially directed graphs. Then,
we define the global reaching centrality (GRC), which is the difference between
the maximum and the average value of the generalized reach centralities over
the network. We investigate the behavior of the GRC considering both a
synthetic model with an adjustable level of hierarchy and real networks.
Results for real networks show that our hierarchy measure is related to the
controllability of the given system. We also propose a visualization procedure
for large complex networks that can be used to obtain an overall qualitative
picture about the nature of their hierarchical structure.Comment: 29 pages, 9 figures, 4 table
Light-Driven H2 Evolution and C═C or C═O Bond Hydrogenation by Shewanella oneidensis : A Versatile Strategy for Photocatalysis by Nonphotosynthetic Microorganisms
Photocatalytic chemical synthesis by coupling abiotic photosensitizers to purified enzymes provides an effective way to overcome the low conversion efficiencies of natural photosynthesis while exploiting the high catalytic rates and selectivity of enzymes as renewable, earth-abundant electrocatalysts. However, the selective synthesis of multiple products requires more versatile approaches and should avoid the time-consuming and costly processes of enzyme purification. Here we demonstrate a cell-based strategy supporting light-driven H2 evolution or the hydrogenation of C═C and C═O bonds in a nonphotosynthetic microorganism. Methylviologen shuttles photoenergized electrons from water-soluble photosensitizers to enzymes that catalyze H2 evolution and the reduction of fumarate, pyruvate, and CO2 in Shewanella oneidensis. The predominant reaction is selected by the experimental conditions, and the results allow rational development of cell-based strategies to harness nature’s intrinsic catalytic diversity for selective light-driven synthesis of a wide range of products
Realisation of a programmable two-qubit quantum processor
The universal quantum computer is a device capable of simulating any physical
system and represents a major goal for the field of quantum information
science. Algorithms performed on such a device are predicted to offer
significant gains for some important computational tasks. In the context of
quantum information, "universal" refers to the ability to perform arbitrary
unitary transformations in the system's computational space. The combination of
arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate is
a gate set capable of achieving universal control of any number of qubits,
provided that these gates can be performed repeatedly and between arbitrary
pairs of qubits. Although gate sets have been demonstrated in several
technologies, they have as yet been tailored toward specific tasks, forming a
small subset of all unitary operators. Here we demonstrate a programmable
quantum processor that realises arbitrary unitary transformations on two
qubits, which are stored in trapped atomic ions. Using quantum state and
process tomography, we characterise the fidelity of our implementation for 160
randomly chosen operations. This universal control is equivalent to simulating
any pairwise interaction between spin-1/2 systems. A programmable multi-qubit
register could form a core component of a large-scale quantum processor, and
the methods used here are suitable for such a device.Comment: 7 pages, 4 figure
Entangled Mechanical Oscillators
Hallmarks of quantum mechanics include superposition and entanglement. In the
context of large complex systems, these features should lead to situations like
Schrodinger's cat, which exists in a superposition of alive and dead states
entangled with a radioactive nucleus. Such situations are not observed in
nature. This may simply be due to our inability to sufficiently isolate the
system of interest from the surrounding environment -- a technical limitation.
Another possibility is some as-of-yet undiscovered mechanism that prevents the
formation of macroscopic entangled states. Such a limitation might depend on
the number of elementary constituents in the system or on the types of degrees
of freedom that are entangled. One system ubiquitous to nature where
entanglement has not been previously demonstrated is distinct mechanical
oscillators. Here we demonstrate deterministic entanglement of separated
mechanical oscillators, consisting of the vibrational states of two pairs of
atomic ions held in different locations. We also demonstrate entanglement of
the internal states of an atomic ion with a distant mechanical oscillator.Comment: 7 pages, 2 figure
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
- …
