732 research outputs found

    Responsivity-based Criterion For Accurate Calibration Of Ftir Emission Spectra: Theoretical Development And Bandwidth Estimation

    Get PDF
    An analytical expression for the variance of the radiance measured by Fourier-transform infrared (FTIR) emission spectrometers exists only in the limit of low noise. Outside this limit, the variance needs to be calculated numerically. In addition, a criterion for low noise is needed to identify properly calibrated radiances and optimize the instrument bandwidth. In this work, the variance and the magnitude of a noise-dependent spectral bias are calculated as a function of the system responsivity (r) and the noise level in its estimate (sigma(r)). The criterion sigma(r)/r \u3c 0.3, applied to downwelling and upwelling FTIR emission spectra, shows that the instrument bandwidth is specified properly for one instrument but needs to be restricted for another

    A responsitivity-based criterion for accurate calibration of FTIR spectra: theoretical development and bandwidth estimation

    Get PDF
    An analytical expression for the variance of the radiance measured by Fourier-transform infrared (FTIR) emission spectrometers exists only in the limit of low noise. Outside this limit, the variance needs to be calculated numerically. In addition, a criterion for low noise is needed to identify properly calibrated radiances and optimize the instrument bandwidth. In this work, the variance and the magnitude of a noise-dependent spectral bias are calculated as a function of the system responsivity (r) and the noise level in its estimate (? r ). The criterion ? r /

    Evaluation of Temperature-Dependent Complex Refractive Indices of Supercooled Liquid Water Using Downwelling Radiance and In-Situ Cloud Measurements at South Pole

    Get PDF
    Clouds have a large effect on the radiation budget and represent a major source of uncertainty in climate models. Supercooled liquid clouds can exist at temperatures as low as 235 K, and the radiative effect of these clouds depends on the complex refractive index (CRI) of liquid water. Laboratory measurements have demonstrated that the liquid-water CRI is temperature-dependent, but corroboration with field measurements is difficult. Here we present measurements of the downwelling infrared radiance and in-situ measurements of supercooled liquid water in a cloud at temperatures as low as 240 K, made at South Pole Station in 2001. These results demonstrate that including the temperature dependence of the liquid-water CRI is essential for accurate calculations of radiative transfer through supercooled liquid clouds. Furthermore, we show that when cloud properties are retrieved from infrared radiances (using the spectral range 500–1,200 cm−1) spurious ice may be retrieved if the 300 K CRI is used for cold liquid clouds (∼240 K). These results have implications for radiative transfer in climate models as well as for retrievals of cloud properties from infrared radiance spectra.publishedVersio

    The next era of renal radionuclide imaging: novel PET radiotracers

    Get PDF
    Although single-photon-emitting radiotracers have long been the standard for renal functional molecular imaging, recent years have seen the development of positron emission tomography (PET) agents for this application. We provide an overview of renal radionuclide PET radiotracers, in particular focusing on novel 18F-labelled and 68Ga-labelled agents. Several reported PET imaging probes allow assessment of glomerular filtration rate, such as [68Ga]ethylenediaminetetraacetic acid ([68Ga]EDTA), [68Ga]IRDye800-tilmanocept and 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS)). The diagnostic performance of [68Ga]EDTA has already been demonstrated in a clinical trial. [68Ga]IRDye800-tilmanocept shows receptor-mediated binding to glomerular mesangial cells, which in turn may allow the monitoring of progression of diabetic nephropathy. [18F]FDS shows excellent kidney extraction and excretion in rats and, as has been shown in the first study in humans. Further, due to its simple one-step radiosynthesis via the most frequently used PET radiotracer 2-deoxy-2-[18F]fluoro-d-glucose, [18F]FDS could be available at nearly every PET centre. A new PET radiotracer has also been introduced for the effective assessment of plasma flow in the kidneys: Re(CO)3-N-([18F]fluoroethyl)iminodiacetic acid (Re(CO)3([18F]FEDA)). This compound demonstrates similar pharmacokinetic properties to its 99mTc-labelled analogue [99mTc](CO)3(FEDA). Thus, if there is a shortage of molybdenum-99, Re(CO)3([18F]FEDA would allow direct comparison with previous studies with 99mTc. The PET radiotracers for renal imaging reviewed here allow thorough evaluation of kidney function, with the tremendous advantage of precise anatomical coregistration with simultaneously acquired CT images and rapid three-dimensional imaging capability

    [18F]FDG-labelled stem cell PET imaging in different route of administrations and multiple animal species

    Get PDF
    Stem cell therapy holds great promise for tissue regeneration and cancer treatment, although its efficacy is still inconclusive and requires further understanding and optimization of the procedures. Non-invasive cell tracking can provide an important opportunity to monitor in vivo cell distribution in living subjects. Here, using a combination of positron emission tomography (PET) and in vitro 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) direct cell labelling, the feasibility of engrafted stem cell monitoring was tested in multiple animal species. Human mesenchymal stem cells (MSCs) were incubated with phosphate-buffered saline containing [18F]FDG for in vitro cell radiolabelling. The pre-labelled MSCs were administrated via peripheral vein in a mouse (n=1), rats (n=4), rabbits (n=4) and non-human primates (n=3), via carotid artery in rats (n=4) and non-human primates (n=3), and via intra-myocardial injection in rats (n=5). PET imaging was started 10 min after cell administration using a dedicated small animal PET system for a mouse and rats. A clinical PET system was used for the imaging of rabbits and non-human primates. After MSC administration via peripheral vein, PET imaging revealed intense radiotracer signal from the lung in all tested animal species including mouse, rat, rabbit, and non-human primate, suggesting administrated MSCs were trapped in the lung tissue. Furthermore, the distribution of the PET signal significantly differed based on the route of cell administration. Administration via carotid artery showed the highest activity in the head, and intra-myocardial injection increased signal from the heart. In vitro [18F]FDG MSC pre-labelling for PET imaging is feasible and allows non-invasive visualization of initial cell distribution after different routes of cell administration in multiple animal models. Those results highlight the potential use of that imaging approach for the understanding and optimization of stem cell therapy in translational research

    Initial Evaluation of AF78: a Rationally Designed Fluorine-18-Labelled PET Radiotracer Targeting Norepinephrine Transporter

    Get PDF
    Purpose Taking full advantage of positron emission tomography (PET) technology, fluorine-18-labelled radiotracers targeting norepinephrine transporter (NET) have potential applications in the diagnosis and assessment of cardiac sympathetic nerve conditions as well as the delineation of neuroendocrine tumours. However, to date, none have been used clinically. Drawbacks of currently reported radiotracers include suboptimal kinetics and challenging radiolabelling procedures. Procedures We developed a novel fluorine-18-labelled radiotracer targeting NET, AF78, with efficient one-step radiolabelling based on the phenethylguanidine structure. Radiosynthesis of AF78 was undertaken, followed by validation in cell uptake studies, autoradiography, and in vivo imaging in rats. Results [18F]AF78 was successfully synthesized with 27.9 ± 3.1 % radiochemical yield, > 97 % radiochemical purity and > 53.8 GBq/mmol molar activity. Cell uptake studies demonstrated essentially identical affinity for NET as norepinephrine and meta-iodobenzylgaunidine. Both ex vivo autoradiography and in vivo imaging in rats showed homogeneous and specific cardiac uptake. Conclusions The new PET radiotracer [18F]AF78 demonstrated high affinity for NET and favourable biodistribution in rats. A structure-activity relationship between radiotracer structures and affinity for NET was revealed, which may serve as the basis for the further design of NET targeting radiotracers with favourable features

    Molecular imaging-derived biomarker of cardiac nerve integrity — introducing high NET affinity PET probe 18F-AF78

    Get PDF
    Background: Radiolabeled agents that are substrates for the norepinephrine transporter (NET) can be used to quantify cardiac sympathetic nervous conditions and have been demonstrated to identify high-risk congestive heart failure (HF) patients prone to arrhythmic events. We aimed to fully characterize the kinetic profile of the novel (18)F-labeled NET probe AF78 for PET imaging of the cardiac sympathetic nervous system (SNS) among various species. Methods: (18)F-AF78 was compared to norepinephrine (NE) and established SNS radiotracers by employing in vitro cell assays, followed by an in vivo PET imaging approach with healthy rats, rabbits and nonhuman primates (NHPs). Additionally, chase protocols were performed in NHPs with NET inhibitor desipramine (DMI) and the NE releasing stimulator tyramine (TYR) to investigate retention kinetics in cardiac SNS. Results: Relative to other SNS radiotracers, (18)F-AF78 showed higher transport affinity via NET in a cell-based competitive uptake assay (IC(50) 0.42 ± 0.14 µM), almost identical to that of NE (IC(50), 0.50 ± 0.16 µM, n.s.). In rabbits and NHPs, initial cardiac uptake was significantly reduced by NET inhibition. Furthermore, cardiac tracer retention was not affected by a DMI chase protocol but was markedly reduced by intermittent TYR chase, thereby suggesting that (18)F-AF78 is stored and can be released via the synaptic vesicular turnover process. Computational modeling hypothesized the formation of a T-shaped π-π stacking at the binding site, suggesting a rationale for the high affinity of (18)F-AF78. Conclusion: (18)F-AF78 demonstrated high in vitro NET affinity and advantageous in vivo radiotracer kinetics across various species, indicating that (18)F-AF78 is an SNS imaging agent with strong potential to guide specific interventions in cardiovascular medicine

    In vivo functional assessment of Sodium-Glucose Cotransporters (SGLTs) using [18F]Me4FDG PET in rats

    Get PDF
    BACKGROUND: Mediating glucose absorption in the small intestine and renal clearance, sodium glucose cotransporters (SGLTs) have emerged as an attractive therapeutic target in diabetic patients. A substantial fraction of patients, however, only achieve inadequate glycemic control. Thus, we aimed to assess the potential of the SGLT-targeting PET radiotracer alpha-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside ([(18)F]Me4FDG) as a noninvasive intestinal and renal biomarker of SGLT-mediated glucose transport. METHODS: We investigated healthy rats using a dedicated small animal PET system. Dynamic imaging was conducted after administration of the reference radiotracer 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), or the SGLT-targeting agent, [(18)F]Me4FDG either directly into the digestive tract (for assessing intestinal absorption) or via the tail vein (for evaluating kidney excretion). To confirm the specificity of [(18)F]Me4FDG and responsiveness to treatment, a subset of animals was also pretreated with the SGLT inhibitor phlorizin. In this regard, an intraintestinal route of administration was used to assess tracer absorption in the digestive tract, while for renal assessment, phlorizin was injected intravenously (IV). RESULTS: Serving as reference, intestinal administration of [(18)F]FDG led to slow absorption with retention of 89.2 ± 3.5% of administered radioactivity at 15 min. [(18)F]Me4FDG, however, was rapidly absorbed into the blood and cleared from the intestine within 15 min, leading to markedly lower tracer retention of 18.5 ± 1.2% (P < 0.0001). Intraintestinal phlorizin led to marked increase of [(18)F]Me4FDG uptake (15 min, 99.9 ± 4.7%; P < 0.0001 vs. untreated controls), supporting the notion that this PET agent can measure adequate SGLT inhibition in the digestive tract. In the kidneys, radiotracer was also sensitive to SGLT inhibition. After IV injection, [(18)F]Me4FDG reabsorption in the renal cortex was significantly suppressed by phlorizin when compared to untreated animals (%ID/g at 60 min, 0.42 ± 0.10 vs. untreated controls, 1.20 ± 0.03; P < 0.0001). CONCLUSION: As a noninvasive read-out of the concurrent SGLT expression in both the digestive tract and the renal cortex, [(18)F]Me4FDG PET may serve as a surrogate marker for treatment response to SGLT inhibition. As such, [(18)F]Me4FDG may enable improvement in glycemic control in diabetes by PET-based monitoring strategies

    Automated lesion detection of breast cancer in [18F] FDG PET/CT using a novel AI-Based workflow

    Get PDF
    UNLABELLED: Applications based on artificial intelligence (AI) and deep learning (DL) are rapidly being developed to assist in the detection and characterization of lesions on medical images. In this study, we developed and examined an image-processing workflow that incorporates both traditional image processing with AI technology and utilizes a standards-based approach for disease identification and quantitation to segment and classify tissue within a whole-body [ METHODS: One hundred thirty baseline PET/CT studies from two multi-institutional preoperative clinical trials in early-stage breast cancer were semi-automatically segmented using techniques based on PERCIST v1.0 thresholds and the individual segmentations classified as to tissue type by an experienced nuclear medicine physician. These classifications were then used to train a convolutional neural network (CNN) to automatically accomplish the same tasks. RESULTS: Our CNN-based workflow demonstrated Sensitivity at detecting disease (either primary lesion or lymphadenopathy) of 0.96 (95% CI [0.9, 1.0], 99% CI [0.87,1.00]), Specificity of 1.00 (95% CI [1.0,1.0], 99% CI [1.0,1.0]), DICE score of 0.94 (95% CI [0.89, 0.99], 99% CI [0.86, 1.00]), and Jaccard score of 0.89 (95% CI [0.80, 0.98], 99% CI [0.74, 1.00]). CONCLUSION: This pilot work has demonstrated the ability of AI-based workflow using DL-CNNs to specifically identify breast cancer tissue as determined by
    • …
    corecore