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Responsivity-based criterion for accurate 
calibration of FTIR emission spectra: theoretical 

development and bandwidth estimation 
Penny M. Rowe,1,* Steven P. Neshyba,2 and Von P. Walden1 

1Department of Geography, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, USA 
2Department of Chemistry, University of Puget Sound, 1500 N. Warner, Tacoma, Washington 98416, USA 

*prowe@harbornet.com 

Abstract: An analytical expression for the variance of the radiance 
measured by Fourier-transform infrared (FTIR) emission spectrometers 
exists only in the limit of low noise. Outside this limit, the variance needs to 
be calculated numerically. In addition, a criterion for low noise is needed to 
identify properly calibrated radiances and optimize the instrument 
bandwidth. In this work, the variance and the magnitude of a noise-
dependent spectral bias are calculated as a function of the system 
responsivity (r) and the noise level in its estimate (σr). The criterion σr /r 
<0.3, applied to downwelling and upwelling FTIR emission spectra, shows 
that the instrument bandwidth is specified properly for one instrument but 
needs to be restricted for another. 
©2011 Optical Society of America 
OCIS codes: (120.0280) Remote sensing and sensors; (120.3180) Interferometry; (120.5630) 
Radiometry; (120.6200) Spectrometers and spectroscopic instrumentation; (280.4991) Passive 
remote sensing. 
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1. Introduction 

Measurements of atmospheric infrared emission made by Fourier transform infrared (FTIR) 
spectrometers are often calibrated using spectra of hot and cold calibration sources to produce 
spectral radiances (e.g. [1]). Error in the calibrated radiance is thus due to noise in 
uncalibrated, or raw, scene and calibration-source spectra, in addition to drift of the response 
of the instrument with time and other sources such as the temperatures and emissivities of 
calibration sources (e.g. [2–4]). In particular, error in calibrated radiances due to noise in raw 
spectra depends not only on detector noise, but also on other instrument characteristics and on 
experimental protocols. Instrument characteristics include the response of the detector, which 
tapers off at the limits of detector sensitivity, and the optical system, while experimental 
protocols include the number of coadditions (averaged raw spectra), the concentrations of 
trace gases in the instrument, and the temperatures of the hot and cold calibration sources. 
Together, these determine how the noise propagates into the calibrated spectra and, thus, the 
variance of the calibrated radiance due to noise. 

An analytical expression has been derived for the variance of the calibrated radiance when 
random errors (e.g. due to detector noise) in the calibration-source spectra are negligible [5], 
or small [2]. However, a quantitative threshold is needed for how small these errors need to be 
for the expression to be accurate, and the threshold must depend on the instrument 
characteristics and experimental protocols given above. Such a threshold is needed to 
optimize the spectral bandwidth, to make the spectral range as broad as possible while 
ensuring that radiances can still be calibrated properly at wavenumbers that are within the 
band, but near its limits. In addition, an estimate of the variance is needed for cases when 
errors in calibration-source spectra are not small enough to use the expression given in [2]. 

In this work, we propose a criterion for accurate calibration in terms of the system 
responsivity (r ) and the uncertainty (σr) in the measurement-based estimation of r (rm ). In 
addition, the variance and bias in calibrated radiances due to noise in raw spectra are 
determined numerically as a function of σr /r. In section 2, a rationale for setting the criterion 
in terms of σr /r is discussed, after introducing the notation that will be used here and 
expressing the variance in the limit of low noise in this notation. In section 3, the error in the 
calibrated radiance due to noise in the raw spectra is derived. It is shown that high noise 
causes biases in calibrated spectra; the magnitude of the bias is calculated numerically, as a 
function of σr /r. The variance of the calibrated radiance is determined as a function of three 
error terms that are calculated numerically and depend, in turn, on σr /r. The variance is used 
to set a quantitative criterion for low noise. In section 4 this criterion is applied to 
downwelling and upwelling FTIR emission spectra to choose an optimal bandwidth, which is 
then compared to that specified for each instrument. Finally, section 5 presents conclusions of 
this work. A companion paper ([6]; hereafter referred to as RNCW) shows how the 
responsivity criterion can also be used for identifying spectral data points in-band that cannot 
be calibrated properly due to absorption by trace gases inside the instrument. 

2. A criterion for accurate calibration in terms of responsivity 

A rationale for setting a criterion in terms of the system responsivity is given in this section. 
First, the notation used here is developed and expressions for the error and variance in 
calibrated spectra, developed by Sromovsky [2], are expressed using our notation. Following 
this, we provide a rationale for using σr /r as a figure of merit for the instrument. Finally, we 
examine measurements of the system responsivity. 
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2.1 Notation 

The uncalibrated, or raw, spectrum measured by an FTIR spectrometer, in the absence of 
noise, is given by Sromovsky (Eq. (18) of [2]) as 

 0.5 exp( ) ,x d AI x dV R t L i R Oη φ′ = +   (1) 

where the subscript x is replaced with h for the raw spectrum measured when viewing the hot 
calibration source, c for the cold source, or s for the scene. Furthermore, η is the overall 
system efficiency, Rd is the detector response, Lx is the radiance, ϕ is the instrument phase, and 
RdO is the background or instrument spectrum. The term tAI represents the transmittance of air 
inside the instrument, which is not included in [2] but is discussed in RNCW. The quantity 
0.5ηRdtAI defines the system responsivity, r. 

The prime on Vx indicates that errors are not taken into account. As pointed out by 
Sromovsky (first paragraph of section 6C of [2]), a term needs to be added to account for 
detector noise. Sromovsky shows how detector noise in a measured interferogram transforms 
into noise in a spectrum, and specifies a noise term, εx, which has the same units as the 
calibrated radiance (e.g. Lx). To account for detector noise, the quantity rεx is added to the 
right hand side of Eq. (1), where r converts the noise term to the units of the raw spectrum 
(e.g. V’x), and we drop the prime on Vx to indicate that noise is now included. We define an 
equivalent noise term, nx ≡ rεx exp(-iφ), which is already in the units of the raw spectrum. The 
raw spectrum, including noise, can then be written 

 exp( ) exp( ).x x d xV rL i R O n iφ φ= + +   (2) 

The advantage of the present formulation is that the detector noise in a raw spectrum, and thus 
the standard deviation of nx exp(iφ) is expected to be fairly constant with wavenumber. By 
contrast, the standard deviation of εx varies with wavenumber (because the proportionality 
constant r varies with wavenumber). The noise in the raw spectrum due to detector noise, nx 
exp(iϕ), is assumed to be random with real and imaginary parts of equal variance that are 
uncorrelated, both of which have a normal distribution with a mean of zero. These statistical 
characteristics are a good approximation for some instruments, including the Atmospheric 
Emitted Radiance Interferometer (AERI [3,4]; ), but may not be true for all instruments (for 
example, if the error is correlated with moving-mirror position [2]). 

For convenience, the term “noise” hereafter refers to nx exp(iϕ), which is the detector noise 
for an average of M coadded spectra; that is, the detector noise for a single scan divided by the 
square root of M. Thus the standard deviations of nh, nc, and ns should be the same if the 
number of coadds are the same. For the purpose of this paper, we assume that the same 
number of coadditions will be taken for the hot and cold calibration sources (Mh and Mc are 
the same) but a different number may be used for the scene (Ms may differ), thus the standard 
deviation of ns may be different. Although errors exist in uncalibrated spectra due to other 
sources, in this work we focus on detector noise. 

We will use the term “error” to refer to the effects of noise on calibrated radiances. It will 
be shown that propagation of random noise in raw spectra does not generally lead to random 
error in calibrated spectra; in particular a bias is introduced at high noise levels. Importantly, 
averaging raw spectra (coadding) is not equivalent to averaging calibrated radiances. 

2.2 Error in calibrated spectra in the low-noise limit 

Calibration of the scene spectrum, Vs, is accomplished using spectra of hot and cold 
blackbodies, Vh and Vc, of known radiances, Lh and Lc. The calibration equation is given by 
Revercomb et al. [1] as 

 [ ]Re ,s c
s L h c c

h c

V V
L L L L

V V
ε

 −
+ = − + − 

  (3) 
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where we have explicitly included the error in Ls due to noise, εL. Using Eq. (2) for Vs, Vh and 
Vc in Eq. (3) and solving for εL yields 

 [ ]( ) ( )
Re .

( ) ( )
s c s c

L h c c s
h c h c

r L L n n
L L L L

r L L n n
ε

 − + −
= − + − − + − 

  (4) 

In the limit that (nh-nc)/r << Lh-Lc, which we will hereafter refer to as the “low-noise limit”, 
Sromovsky [2] shows that 

 -
Re Re ,  for 1,

( - )
s c s c h c h c

L
h c h c

n n L L n n n n
r L L r r L L

ε
 − − −   ≈ −     −    

   (5) 

where we have written the equation in our notation (compare to Eq. (53) of [2]). We can use 
Eq. (4) or (5) to calculate statistical properties of the error in the calibrated radiance. The 
variance of a coadded calibrated radiance is <εL

2>-<εL>2, where <εL> represents the bias 
(brackets represent the mean over a large number of samples). 

From Eq. (5), we can see that in the low-noise limit, <εL> = 0, since <Re[n]> = 0, 
indicating that no bias exists in calibrated spectra due to noise. Sromovsky develops an 
analytical expression for <εL

2>, (which is thus the variance in the low-noise limit), 

 
2 22 2 2

2
2 2 2

-
,  for 1,

( - )
s c hn n nh s c s h c

L
h c h c h c

L L L L n n
L L L L r L Lr r r

σ σ σ
ε

      − −
≈ + +         − −      

   (6) 

where the σn terms represent the standard deviations of the real parts of ns, nh, and nc. (For the 
derivation, see [2]; we discuss Eq. (6) in section 3 in the context of this work). The σn can be 
calculated from the standard deviations of Vs, Vh and Vc over a short enough time period that 
Ls, Lh, and Lc are expected to be fairly constant. The variance in the low-noise limit given by 
Eq. (6) is useful because it can be calculated for real measurements. It is therefore important 
to determine when the requirement for low noise is met. 

2.3 Rationale for setting a criterion in terms of the system responsivity 

The requirement for low noise is that (nh-nc)/[r(Lh-Lc)] << 1. The system responsivity cannot 
be measured directly but can be estimated from a measurement we term rm (in contrast to 
Revercomb et al. [1], who make no notational distinction between the true system responsivity 
and its estimation). The requirement (nh-nc)/[r(Lh-Lc)] << 1 can then be expressed succinctly 
in terms of r and the standard deviation of rm, as shown below. This makes the system 
responsivity a useful quantity for setting the criterion for low noise. 

The system responsivity can be estimated by taking the difference of uncalibrated 
blackbody spectra [as in Eqs. (8) and (9) of [1], but including the noise terms explicitly], 

 [ ] ( )exp( ) exp( ).h c h c h cV V r L L i n n iφ φ− = − + −   (7) 

We define a measured responsivity, rm, 

 ( ) ( ) ( )/ exp( ),m h c h c rr V V L L r e iφ≡ − − = +   (8) 

where the (complex) error in rm is given by 

 ( ) ( )/ .r h c h ce n n L L≡ − −   (9) 

We can then express the requirement for low noise in the compact form er /r << 1. 
Since the individual errors n cannot be measured, we need to relate er /r to quantities that 

are experimentally accessible. The variance of rm is given by 
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 ( )( )2 ,r m m m mr r r rσ
∗

= − −   (10) 

where we have left out a subscript “m” from er and σr for notational convenience. The asterisk 
represents the complex conjugate. We can insert Eq. (8) for rm into Eq. (10) to show that 

 ( ) ( ) 22 exp( ) exp( ) ,r r r r r re e i e e i eσ φ φ
∗

   ≡ − − =      (11) 

where the double vertical bars indicate magnitude, and we have assumed that the phase is 
constant over the average and noted that <er> = 0. Thus we can write a criterion for low noise 
in terms of quantities that are experimentally accessible as 

 / 1.r rσ    (12) 

Equation (12) is a statistical statement of the condition (nh-nc)/[r(Lh-Lc)] << 1. It is 
experimentally accessible, in that we can estimate r and σr from measured values of rm (σr can 
also be estimated from <||er||>, if known). Moreover, the value of σr /r incorporates important 
instrument characteristics and experiment protocols, as described in the introduction. In 
particular, σr depends on detector noise, number of coadditions M, and the temperature-
dependent radiance difference between hot and cold calibration sources. The system 
responsivity, r, depends on detector sensitivity, the optical system, and the influence of trace 
gases in the instrument. Thus, σr /r represents uncertainties embedded in each of these factors 
into a comprehensive, wavenumber-dependent figure of merit, which allows us to define a 
quantitative criterion for low noise. Next, we examine these quantities using experimental 
measurements to identify a practical threshold for the inequality appearing in Eq. (12). 

2.4 The responsivity estimation 

Figure 1 shows ||rm|| and estimates of σr for both a ground-based and a space-borne FTIR 
spectrometer. The ground-based spectrometer is an AERI [3,4,7] operated at Eureka, Canada 
from March 2006 through April 2009 as part of the Canadian Network for the Detection of 
Atmospheric Change (CANDAC) program. The space-borne spectrometer is the 
Interferometric Monitor for Greenhouse gases (IMG [8,9]). 

The solid line in Fig. 1(a) shows ||rm|| for a summertime AERI measurement, while the 
dashed curve is an estimate of σr based on the standard deviation of sequential measurements 
of rm. The bandwidths of instruments vary, depending on the characteristics of the optics and 
detector, the number of coadditions, and the error tolerance of the user. For this particular 
AERI, the lower bandwidth limit has been specified as 500 cm−1 [10], as shown by the vertical 
dash-dotted lines. Near the centers of strong absorption lines of water vapor (1300 to 2000 
cm−1) and carbon dioxide (667 cm−1), the responsivity drops to very low values due to 
absorption by these gases in the instrument; this is discussed in RNCW. Away from strong 
line centers, r varies slowly with wavenumber. Outside the sensitive region of the detector, r 
is close to 0 and thus ||rm|| = ||er exp(iϕ)||. 

Figure 1(b) shows ||rm|| for band 1 of the IMG instrument. The dashed curve is an estimate 
of σr based on the standard deviation of ||rm|| about neighboring spectral data points (in ~10 
cm−1 intervals) from 2350 to 2500 cm−1. Assuming the noise level <||n||> is fairly constant 
with wavenumber, this can be used to estimate σr at all wavenumbers, since Lh and Lc are 
known (Lc = 0, since the cold calibration source is space for the IMG). Vertical dash-dotted 
lines represent the bandwidth specified for the instrument [8]. For this instrument, the low-
wavenumber cut-off is set close to the maximum of the responsivity. At the high-wavenumber 
extreme (3030 cm−1), r is still large but σr has also become large, as Lh decreases with 
wavenumber (i.e. rm has become very noisy). Overall, σr / ||rm|| is considerably larger in-band 
than for the AERI. 
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Fig. 1. Measurements of the instrument response (rm) and its standard deviation (σr) for (a) the 
Atmospheric Emitted Radiance Interferometer (AERI) and (b) band 1 of the Interferometric 
Monitor for Greenhouse Gases (IMG). 

As shown in Fig. 1(b), for band 1 of the IMG, σr /r ~0.5 at ~3000 cm−1, thus calling into 
question whether this meets the low-noise criterion σr /r <<1 [Eq. (12)]. Outside the low-noise 
limit, Eq. (6) does not apply and an alternate estimate of the variance is needed. However, a 
method for calculating <εL

2> and <εL> outside the low-noise limit has not been previously 
published. An estimate of the variance that applies to all error levels can also be used to set 
the criterion for how much less than 1 the inequality must be for the low-noise limit to be 
valid. In addition, an estimate of <εL> is needed to determine if a bias exists in calibrated 
spectra outside the low-noise limit. These issues are addressed in section 3. 

3. Bias and variance for all noise levels 

In this section, expressions for <εL> and <εL
2> are derived that are valid for all noise levels. 

The expressions are written in terms of three dimensionless quantities that can be calculated 
independently of any experiment, as a function of σr /r. In the low-noise limit when σr /r <<1, 
we show that these results are equivalent to those of previous work [2]. 

Rearranging Eq. (4), the error in a calibrated spectrum due to noise is given as 

 ( )( ) / [ ( )] /
( ) Re Re .

1 / 1 /
s c h c r

L h c c s
r r

n n r L L e rL L L L
e r e r

ε
   − −

= − + −   + +   
  (13) 

We define three dimensionless quantities 

 /
Re ,

1 ( / )
r

r
r

e rf
e r

 
≡  + 

  (14) 

 
/

Re ,
1 ( / )

c
c

r

e r
f

e r
 

≡  + 
  (15) 

and 

 /
Re ,

1 ( / )
s

s
r

e r
f

e r
 

≡  + 
  (16) 
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where we have used Eq. (9) and defined analogous terms ec ≡ nc /(Lh - Lc) and es ≡ (ns /s) /(Lh - 
Lc), and where s is defined so that ns/s has the same standard deviation as nh. We can then 
write εL in a more compact form, 

 ( )( ) ( )( ).L s c h c r c ssf f L L f L Lε = − − + −   (17) 

3.1 Bias error 

The mean of εL, < εL>, represents the mean bias in spectra, that is, the bias if many spectra are 
averaged. If s, Lh, Lc, and Ls are assumed to be constant with time, then 

 ( ) ( ) ( ).L s h c c h c r c ss f L L f L L f L Lε = − − − + −   (18) 

In the low-noise limit, the approximate expressions for the <fs>, <fr>, and <fc> are zero, 
indicating that errors average to zero, and no bias exists. Outside of the low-noise limit, the 
terms can be calculated numerically. For example, the expectation value for fs is 

 /
Re ,

1 / s r

s
s e s e r

r

e r
f P de P de

e r
 

=  + 
∫ ∫   (19) 

where each integral sign actually represents two integrations, over the real and imaginary 
parts, each from -∞ to ∞ and where the probability distributions, P, are complex Gaussians. 
Taking the real part of the term in brackets and rearranging gives a sum of terms, one 
multiplied by an integral whose integrand is odd about Re(es) and the other an integrand that 
is odd about Im(es). The two terms, and therefore <fs>, are zero. Thus, Eq. (18) reduces to 

 ( ) ( ).L c h c r c sf L L f L Lε = − − + −   (20) 

The value of <fc > can be shown to be proportional to <fr> as follows. We define a term <fh> 
by analogy to <fc> so that <fr> = <fh-c> = <fh>-<fc>. Because we are taking the mean, and nh 
and nc are statistically identical, we can interchange them in <fh> and replace each with its 
negative, since they are equally likely to be positive or negative. Thus <fh> = -<fc>. Then <fr> 
= -<fc>-<fc>, or <fc> = −0.5<fr>. Substituting −0.5<fr> for <fc> in Eq. (20) and rearranging 
gives 

 ( )0.5 0.5 .L r h c sf L L Lε = + −   (21) 

The expectation value for fr can be calculated numerically and is found to be finite. (The 
singularity in the expression for <fr> at er = −1 is integrable). Figure 2 shows <fr> as a 
function of σr /r. Figure 2(a) shows the increase in <fr> from ~0 to ~1 as σr /r increases from 
0.1 to 30. In Fig. 2(b), the y-axis has been converted to a log scale to emphasize the rapid 
decrease in <fr> as σr /r decreases, for small σr /r. 

If many calibrated radiances are averaged over a time period for which Lh and Lc are 
approximately constant (i.e. the temperatures of the calibration sources are constant), and Ls is 
constant (i.e. the scene radiance is constant), then the mean error is given by Eq. (21). Thus, 
this represents the mean bias in the calibrated radiance due to noise. 

In the low-noise limit, fr ≈Re[er /r], and <fr> ≈0, since the real part of the error is random. 
Therefore, in the low-noise limit, biases are zero, as mentioned in section 2. This is borne out 
in the numerical calculations shown in Fig. 2, where <fr> approaches zero as σr /r decreases. 
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Fig. 2. The mean of fr (described in the text) as a function of the uncertainty in the measured 
instrument response relative to the true instrument response (σr /r) with a) the x-axis on a log 
scale and b) both axes on log scales. 

To determine the mean bias in a given measurement, σr /r must be calculated at each 
wavenumber and the corresponding values of <fr> determined from Fig. 2. Finally, these, 
together with an estimate of Ls, can be inserted into Eq. (21) to obtain the bias. 

As σr /r increases, <fr> approaches unity, which gives 

 0.5 0.5 , as / .L h c s rL L L rε σ→ + − →∞   (22) 

In this limit, the expected average of calibrated radiances, <Ls + εL>, has no dependence on 
the scene radiance, but approaches 0.5(Lh + Lc). 

Figure 3(a) shows the average of 1816 calibrated AERI spectra taken at Eureka, Canada 
on 1 July 2008 (blue curve). For this case, 0.5(Lh + Lc) (red dashed curve) is greater than the 
blue curve at most wavenumbers within the band (black vertical dashed lines). Outside the 
band, at wavenumbers smaller than 492 cm−1 and greater than 1820 cm−1, r~0 because the 
instrument is unresponsive. Thus, in these regions σr /r is quite large, and we expect <Ls + εL> 
to be close to 0.5(Lh + Lc). In the figure, the blue curve and red dashed curve are 
approximately the same in these regions, showing that this is indeed the case and validating 
the result predicted by Eq. (22). There are also wavenumbers near strong absorption line-
centers in-band where the mean is close to 0.5(Lh + Lc); these are discussed in RNCW. 

In Fig. 3(a), it is fortuitous that the red dashed curve represents an upper limit to the blue 
curve; this is because the Eureka AERI experimental protocols are such that Lc ≥ ~Ls and Lh is 
large. However, Lh + Lc is unrelated to Ls, which means that in other experimental 
circumstances the red dashed curve may not be an upper limit to the blue curve. For example, 
Fig. 3(b), shows the average of 3 calibrated IMG spectra taken at −68.8° latitude and 93.4° 
longitude (blue curve; because the scene changes quickly for the IMG as the satellite moves, 
only 3 were averaged). In this case, the red dashed curve is sometimes larger than, equal to, or 
lower than the blue curve merely because 0.5(Lh + Lc) happens to be of the same order as Ls. 
The important point is that when σr /r is extremely large, the average of measured radiances, 
<Ls + εL>, has no dependence on Ls. Instead <Ls + εL>≈0.5(Lh + Lc); this can be seen in  
Fig. 3(b) above 3000 cm−1 (it is not apparent outside the bandwidth at the low-wavenumber 
end due to other errors in IMG spectra). 
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Fig. 3. Averaged calibrated radiance, <Ls + εL> and the limit approached at high noise, 0.5(Lh + 
Lc). Panel (a) shows the average of 1816 downwelling radiance spectra taken over a 24-hour 
period on 01 July 2008 with the Atmospheric Emitted Radiance Interferometer (AERI), while 
(b) shows the average of 3 upwelling radiance spectra measured by the Interferometric Monitor 
for Greenhouse Gases (IMG) at −68.8° latitude and 93.4° longitude. 

As long as σr /r is small, the bias will be negligible. For example, at 1835 cm−1, for the 
AERI measurement of 0357 UTC on 1 July 2008, σr /r = 0.34 corresponds to an uncertainty 
σL (in the low-noise limit) of 1.9 radiance unit [RU; 1 RU = mW m−1 sr−1 (cm−1)−1], but only 
corresponds to a bias error of ~0.0008 RU [noting from Fig. 2 that fr = 10−4, and further that Lh 
+ Lc = 11.5 and Ls~Lc~5.9 RU, and using Eq. (21)]. However, at 1841 cm−1 (above the 
standard cut-off for AERI instruments of 1800 cm−1), the uncertainty is 6.0 RU (in the low-
noise limit) and the bias is 2.1 RU. It is therefore important to restrict the spectral range so 
that it only includes wavenumbers where σr /r is small enough that the bias error is negligible 
compared to the total error budget; such a decision will likely depend on how the data will be 
used. In particular, it is desirable that the bias be smaller than the random component of the 
noise after the averaging of calibrated spectra or spectral data points, or removal of noise 
through techniques such as principal component analysis [11,12]. 

3.2 Variance 

The variance of a calibrated spectrum is σL
2 = <εL

2>-<εL>2, which is approximately equal to 
<εL

2>. Squaring Eq. (17) and taking the mean leads to 

 ( ) ( ) ( ) ( ) ( )( )2 2 22 2 2 .L s c h c r c s s c r h c c ssf f L L f L L sf f f L L L Lε = − − + − + − − −   (23) 

Like <fs>, all averages that include fs to the first power are zero: <fs fr> = <fs fc> = <fh fs > = 0. 
Reducing Eq. (23) then gives 

 ( )( ) ( ) ( )( )2 22 2 2 2 2 2 .L s c h c r c s c r h c c ss f f L L f L L f f L L L Lε = + − + − − − −   (24) 

If we omit a small region about the singularity to allow numerical computation (i.e., calculate 
a truncated mean), the integrations can be performed for <fs

2>, <fc
2>, <fr

2>, and <fcfr>. 
The truncated mean and low-noise approximations are shown in Fig. 4. In the limit of 

small σr /r, all truncated-mean terms converge to the low-noise approximations for the <f 2> 
terms and the cross-term in Eq. (24). For example, in the low-noise limit, <fs

2> ~<Re[es]2>. To 
set a threshold for what is considered low noise, we can compare the uppermost curves in  
Fig. 4 (equivalent to ignoring errors that occur once in 100,000 measurements) to those for the 
low-noise approximation. At σr /r = 0.3, the differences are less than about 20% for the four 
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terms, and thus the variance of the calibrated spectrum (σL
2) can reasonably be approximated 

by that for the low-noise limit [Eq. (6)]. Outside this limit, <εL
2> can be calculated by 

determining σr /r, choosing appropriate expectation values from the four plots, and plugging 
the results into Eq. (24). The variance will actually be slightly smaller, since <εL>2, which is 
generally much smaller than <εL

2>, also needs to be estimated (as described above) and 
subtracted. Thus, the low-noise criterion is set to σr /r < 0.3, corresponding to a variance that 
agrees with that for the low-noise approximation to within about 20% for 99.999% of all data. 

 
Fig. 4. (a)-(d). The means of four functions, described in the text, each excluding a small region 
of the probability space about a singularity [see legend in (a)]. The position of the singularity 
depends on the values of two random, complex variables with combined standard deviation  
σr /r. For small σr /r, the mean is proportional to (σr /r)2, as shown (low-noise). 

If the low-noise approximations for the <f 2> terms are used, plugging these into Eq. (24) 
and rearranging gives the expression for the variance in the low-noise limit given by 
Sromovsky [2] and, in our notation, as Eq. (6). 

In contrast to the above, outside the low-noise limit the <f 2> terms and the cross-term, <fc 
fr>, each have non-integrable singularities (at er /r = −1), resulting in infinite values [13]. For 
an actual measurement, ignoring the singularity in the low-noise limit (σr /r <<1) amounts to 
assuming that |er /r| will never be close to 1. As σr /r gets larger, the probability increases of  
|er /r| being close to 1, corresponding to the possibility of arbitrarily large errors in 
measurements (one extreme example is an error of 2800 RU observed in a calibrated AERI 
spectrum on 1 July 2008; more moderate errors are shown in Fig. 2(a) of RNCW). 

4. Application to FTIR emission spectra 

Figure 5 shows σr /r for (a) the AERI and (b) the IMG. Vertical dashed lines indicate the 
limits specified for the bands, as discussed previously. The horizontal dashed line in each 
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panel represents σr /r = 0.3. Thus the values indicated by asterisks show the bandwidths that 
would result in σr /r < 0.3 everywhere within the band, so that bias errors are negligible and 
the variance due to noise is within ~20% of that for the low-noise limit. For this particular 
AERI, the bandwidth specified for the instrument, 500 to 1800 cm−1 [10] is within the 
bandwidth meeting the criterion, 492.3 to 1829.8 cm−1. For the IMG the lower bandwidth 
(2325 cm−1 [8]) is acceptable but the upper bandwidth needs to be restricted (from 3030 cm−1 
[8]) since the range meeting the criterion is 2156 to 2853 cm−1. 

 
Fig. 5. The relative uncertainty in the system responsivity (σr /r) for measurements using a) an 
Atmospheric Emitted Radiance Interferometer (AERI) and (b) band 1 of the Interferometric 
Monitor for Greenhouse Gases (IMG). 

To determine the variance for real measurements, calculation of the low-noise 
approximation to the variance given by Eq. (6) is preferable to the time-intensive numerical 
calculations needed for Eq. (24). We have used numerical calculations to show that Eq. (6) 
should be within ~20% of the numerically-determined variance [Eq. (24)] when σr /r < 0.3. To 
validate this result using AERI measurements, Fig. 6 shows an expanded view from 480 to 
520 cm−1 of the standard deviation for an AERI measurement calculated using both Eq. (6) 
and Eq. (24), where we have omitted 0.001% of the total probability in calculating Eq. (24). 
Also shown is an estimate of the bias, calculated numerically according to Eq. (21). As 
expected, where σr /r > 0.3 (between 480 and 492 cm−1) the two variance estimates disagree 
(by as much as 100%), while where σr /r  < 0.3 (above 492 cm−1) the two variance estimates 
agree to within better than 20%. Furthermore, the bias indicated by <εL> is found to be less 
than 0.01 RU for wavenumbers greater than 492 cm−1. 

The accuracy of the estimate of σr /r  depends on the accuracy with which the noise in raw 
spectra can be estimated as well as the stability of the instrument temperature and phase. In 
particular, σr /r becomes more difficult to estimate as it gets larger; that is, as r gets smaller. In 
addition, since rm is complex, it must be taken into account that ||rm|| may overestimate r by as 
much as σr [2]. The challenge of accurately estimating σr /r is especially important given that 
σr /r can change quickly (for example, by an order of magnitude over 40 cm−1, as shown in 
Fig. 6) and that small changes may correspond to shifts from a value that corresponds to a 
negligible bias and statistically predictable errors to one that results in a large bias and the 
potential of arbitrarily large errors, as shown in Figs. 2 and 4. 
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Fig. 6. The standard deviation (√<εL
2>) and mean bias (<εL>) of calibrated Atmospheric 

Emitted Radiance Interferometer (AERI) spectra, where εL is the error due to noise. The 
standard deviation is calculated numerically excluding 0.001% of probability about a 
singularity in <εL

2>, and in the low-noise limit. The vertical dotted line indicates the 
wavenumber where σr /r = 0.3. 

The criterion that σr /r < 0.3 can be used as a check on the bandwidth, or to set a maximum 
range for the bandwidth. However, since σr only includes random errors in raw spectra of hot 
and cold calibration sources, and therefore does not account for other sources of error, it will 
often be desirable to restrict the bandwidth further than indicated by σr /r. In particular, 
sources of error other than noise may cause a bias that can be observed in averages of 
calibrated spectra. For example, for a measurement made using band 3 of the IMG instrument, 
a bias of ~0.25 Lh is evident at 1900 cm−1 even though σr /r ~0.1, which should indicate a 
negligible bias, and a bias of ~0.5Lh is evident at 2100 cm−1, where σr /r ~0.2 Such biases 
could be due to a background spectrum [RdO in Eq. (1)] that is different for calibration and 
scene views, or to other sources of error such as detector nonlinearity. For the IMG 
instrument, evidence for such errors can be seen in the raw spectra. 

5. Conclusions 

An equation for the variance of (the real part of) a calibrated radiance spectrum is given by 
[2]. The equation for the variance is an approximation, valid only if the noise in uncalibrated 
spectra (n/r) is small compared to Lh – Lc. In this paper, we restate this requirement as σr /r << 
1 where r is the theoretical, real, noise-free system responsivity, estimated from a 
measurement-derived responsivity rm, and where σr is the standard deviation of rm. We use 
numerical simulations to show that as σr /r gets larger, the likelihood of biases and arbitrarily 
large noise spikes in calibrated radiances increases. Numerical simulations are used to 
calculate the magnitude of the mean bias as a function of σr /r, showing that the bias is 
negligible (compared to typical error budgets) for σr /r < 0.3. However, for large σr /r, the 
mean calibrated radiance approaches 0.5(Lh + Lc), regardless of the actual sky radiance. In 
confirmation, averages of many calibrated radiances measured with surface and satellite-based 
instruments are found to be ~0.5(Lh + Lc) outside the detector bandwidth. Numerical 
simulations are used to calculate the variance, excluding a small region of probability where 
the error due to noise is infinite. This variance is found to agree with the low-noise 
approximation to the variance to within 20% for 99.999% of measurements when σr /r = 0.3. 
Thus a reasonable criterion for the low-noise approximation is given as σr /r < 0.3. 
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The criterion σr /r < 0.3 is applied to downwelling radiance spectra (measured by an AERI 
at Eureka) and upwelling spectra (measured by the IMG). The bandwidth specified for the 
AERI, 500 to 1800 cm−1, is found to be within the bandwidth meeting the criterion, 492.3 to 
1829.8 cm−1. For the IMG the bandwidth specified is 2325 to 3030 cm−1 but the range meeting 
the criterion is 2156 to 2853 cm−1, indicating that the upper bandwidth needs to be reduced. If 
other sources of error are small and well known and if σr /r can be calculated with good 
accuracy, as for the Eureka-AERI instrument, this criterion can be used to push the limits of 
the bandwidth when it is desirable to use data near its limits. More generally, uncertainty in 
the estimate of σr /r and the presence of other errors (as for the IMG) make the criterion most 
useful as a check on the bandwidth and to set its maximum range. 
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