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Applications based on artificial intelligence (AI) and deep learning (DL) are

rapidly being developed to assist in the detection and characterization of

lesions on medical images. In this study, we developed and examined an

image-processing workflow that incorporates both traditional image

processing with AI technology and utilizes a standards-based approach for

disease identification and quantitation to segment and classify tissue within a

whole-body [18F]FDG PET/CT study.

Methods: One hundred thirty baseline PET/CT studies from two multi-

institutional preoperative clinical trials in early-stage breast cancer were

semi-automatically segmented using techniques based on PERCIST v1.0

thresholds and the individual segmentations classified as to tissue type by an

experienced nuclear medicine physician. These classifications were then used

to train a convolutional neural network (CNN) to automatically accomplish the

same tasks.

Results: Our CNN-based workflow demonstrated Sensitivity at detecting

disease (either primary lesion or lymphadenopathy) of 0.96 (95% CI [0.9, 1.0],

99% CI [0.87,1.00]), Specificity of 1.00 (95% CI [1.0,1.0], 99% CI [1.0,1.0]), DICE

score of 0.94 (95% CI [0.89, 0.99], 99% CI [0.86, 1.00]), and Jaccard score of

0.89 (95% CI [0.80, 0.98], 99% CI [0.74, 1.00]).

Conclusion: This pilot work has demonstrated the ability of AI-based workflow

using DL-CNNs to specifically identify breast cancer tissue as determined by

[18F]FDG avidity in a PET/CT study. The high sensitivity and specificity of the

network supports the idea that AI can be trained to recognize specific tissue

signatures, both normal and disease, in molecular imaging studies using
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radiopharmaceuticals. Future work will explore the applicability of these

techniques to other disease types and alternative radiotracers, as well as

explore the accuracy of fully automated and quantitative detection and

response assessment.

KEYWORDS

artificial intelligence, machine learning, deep learning, PERCIST v1.0, breast cancer

Introduction

The application of deep learning (DL)-based artificial

intelligence (AI) as a tool for automated interpretation of

radiologic images is a fast-growing area of investigation (1, 2).

However, many of these efforts have been focused on the

application of AI to identify structural elements (either normal

or abnormal anatomy) in computed tomography (CT) or

magnetic resonance imaging (MRI) (3–7). Within the field of

molecular imaging, the application of AI for advancing image

acquisition and reconstruction (8–10), attenuation correction

methods (8, 11), and lesion identification (8, 12, 13) are areas of

active research.

Here we are expanding upon our earlier work (12) to

investigate how DL-based AI may enhance automatic

segmentation and classification of tissue based on location and

avidity levels in 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)

positron emission tomography (PET)/CT studies, with a

specific focus on the detection of breast cancer.

Our approach utilizes a convolutional neural network

(CNN) as the underlying DL engine. CNNs consist of an input

layer (the source images, such as our PET/CT images), an output

layer (a pixel classification map), and one or more ‘hidden’

layers connecting the two. Hidden layers are composed of

interconnected ‘perceptrons’ (algorithms that decide if an

input, or inputs, belong to a specific class) that provide

connectivity between the different nodes in the network,

essentially constructing a very high number of computational

paths between an input image pixel and the output classifier

pixel. They are called ‘convolutional’ networks when a

convolutional operation is performed in at least one or more

of the hidden layers. The network can be trained to classify

specific pixels in an image if provided with enough input images

that are paired with ‘ground truth’ classification data by

iteratively adjusting the weights used by each perceptron until

the system achieves a pre-determined level of accuracy

predicting the provided ‘ground truth’ classifications.

It is our hypothesis that a workflow (Figure 1) that

synthesizes existing standards-based techniques for data

processing with an appropriately architected CNN can result

in an AI system capable of clinical-level performance. We tested

this hypothesis on breast cancer for this initial study based on

the availability of a diverse collection of prospectively acquired

imaging from two separate multi-institutional clinical trials.

Methods

PET imaging studies

For this study we used baseline [18F]FDG PET/CT imaging

exams acquired as part of two separate multi-institutional clinical

trials of patients with breast cancer. The first was TBCRC 008

(NCT00616967) (14), which examined the rate of complete

response when using chemotherapy vs chemotherapy +

vorinostat in cases of HER2-negative breast cancer. The second

was TBCRC 026 (NCT01937117) (15), a trial that examined early

changes in PET standardized uptake values corrected for lean

body mass (SUL) as predictors of pathologic complete response in

cases of HER2-positive breast cancer when treated with

pertuzumab and trastuzumab. Although representing different

clinical patient cohorts, this study only used the baseline PET

studies, which were similar radiological cohorts. The patient

characteristics for each study were similar [Table 1]. Only those

patients from each study for which their PET/CT scans met

technical requirements of uniformity in acquisition and who

were able to undergo both the baseline and follow-up imaging

were included in our study, resulting in a total of 130 cases total.

A notable characteristic of this dataset was its multi-

institutional sourcing. Images were obtained from 11 different

institutions and were acquired on 8 different PET/CT scanners

from 3 different manufacturers.

Software and hardware environment

We used an HP G4 Z4 workstation equipped with a Zeon

processor, 128 GB RAM, and an Nvidia A6000 GPU. For the

neural network we used MATLAB (16) as well as in-house

developed software (17, 18) using Java.
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Training data preparation

Preparation of the PET/CT image data and corresponding

voxel classification maps was a multi-step process. The first step

involved the generation of the initial training annotations and

for this we used our in-house developed Auto-PERCIST (17)

software. This software automates the mechanics of PERCIST

v1.0 (19) analysis by transforming PET data into SUL and then

calculating a global PERCIST baseline assessment threshold

based on an automated measurement sampled from the liver

for use as a global segmentation threshold. PERCIST v1.0 defines

this baseline assessment threshold (19) as:

Baseline Assessment Threshold = 1:5�MeanLiver + 2:0� Std:Dev:Liver

Equation 1 Baseline Assessment Threshold

All clusters of 7 or more connected voxels above that

threshold were then automatically segmented and manually

classified by a trained nuclear medicine physician to one of the

tissue classes. A body contour was automatically generated using

a partitioning threshold of 0.1 SUL. Voxels within the contour

that were not otherwise classified were assigned the class of

Nominal, with voxels outside the contour assigned the class

Background. The auto-located 3 cm3 spherical Liver Volume of

Interest (VOI) was assigned the class of Reference, which served

as a proxy for the liver, although the liver’s avidity, by definition,

was primarily below the threshold for segmentation [Figure 2]

and, thus, not anatomically represented by the VOI.

With all PET voxels now assigned to a class, the matched

PET, CT (re-sampled to match the PET images), and voxel

classification images were exported as co-registered and voxel

matched DICOM files. Each imaging study was then re-sampled

FIGURE 1

Our AI processing workflow illustrating both training and production pipelines.

TABLE 1 Demographic and disease characteristics of patients included in this study.

Characteristic TBCRC008 TBCRC026 Total

No. of Patients 60 (of 62) 70 (of 88) 130 (of 150)

Age (y)

Median 48 58 53

Range 24-72 29-82 24-82

Race

Caucasian 43 75 118

Black 13 7 20

Other 6 6 12

ECOG

0 59 76 135

1 3 12 15

Tumor Size, cm

Median 4 3.7 3.8

Range 1.5-18 2.0-15 1.5-18

Tumor Grade

2 18 22 40

3 44 66 110
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in 3D to have isotropic voxels measuring 3.5 mm, and the

transaxial image slices were center cropped to a final size of 128 x

128 voxels. These data were then re-processed using an

automated data cleaning routine in which the PET component

was filtered with a 3D spherical smoothing filter measuring 1

cm3 to reduce image noise. The Reference class voxels were then

re-sampled, and a new reference mean and standard deviation

were calculated. From these, a Reference Threshold was

calculated.

Reference Threshold = 1:0�MeanLiver − 2:0� Std:  Dev:Liver

Equation 2 Reference Threshold

Using the Reference threshold, the Reference region was

allowed to grow into the pool of adjacent voxels which were

equal to or greater than the threshold and not otherwise

classified (Nominal voxels only). After each iteration of

Reference region growth, the pool of eligible voxels was

commensurately ‘shrunk’ by 1 voxel, constraining the pool of

voxels eligible for Reference growth during the next growth

cycle. This technique, which we called ‘Round-Robin’ region

growing, provided a self-limiting constraint to region growth

and allowed the Reference region to grow into a more

anatomically correct configuration while minimizing the

opportunity for growth beyond the anatomic boundary.

Once Reference region growth self-terminated, a new

Reference (Liver) mean and standard deviation was measured,

and a new tissue threshold was calculated using the PERCIST

Follow-up assessment threshold (19).

Follow − up Assessment Threshold = 1:0�MeanLiver + 2:0� Std:  Dev:Liver

Equation 3 Follow-Up Assessment Threshold

Using this new, slightly lower threshold than the one

originally used, specific tissue classes were allowed to

automatically grow into eligible (Nominal) adjacent voxels

using the ‘Round-Robin’ approach used in the auto-growing of

the Reference sample. As with the Reference region, the purpose

of this second round of region growing was to allow the higher

avidity-based segmentations to grow into the contour of their

anatomy more closely. Once the annotation growing self-

terminated, the corresponding PET, CT, and newly generated

tissue annotations were exported for use in network training.

The PET data were exported in SUL units multiplied by 100

(e.g., a voxel with a value of 3.27 SUL was encoded in the training

image as 327). The CT data were exported in Hounsfield (HU)

units offset to a base value of ‘0’. Corresponding PET and CT

transaxial slices were then concatenated into a single multi-

channel 2D matrix and exported as a binary file for use in

network training. The corresponding tissue annotations were

exported as 8-bit indexed PNG format files. All files representing

the same transaxial slice shared the same filename.

Of note, not every study contained voxels from every tissue

class, as not every tissue (e.g., Brown_Fat) was present or expressed

adequate avidity (e.g., Heart) in every study to be identified by the

threshold-based method. In addition, the system was designed to

process and learn from 2D transaxial plane images, so individual

images used in the training could contain as few as two classes

(Background and Nominal), or more [Figure 3].

The assignment of voxels to tissue classes was not uniformly

distributed throughout the training set, with the number of

voxels assigned to Background and Nominal far outweighing the

number assigned to the segmented organs and lesions. To

remedy this imbalance, class weights were calculated based on

the total number of voxels in each class versus the entire training

set, and their reciprocal values applied as weights during

training. These weights were then use by the loss function of

network when performing final pixel classification.

Neural network architecture

Our CNN architecture [Figure 4] was modelled after a 2-

dimensional (transaxial slice-based) multi-resolution U-Net

(20). The network utilized 4 down-sampling layers

[Figure 4B], and 4 up-sampling layers [Figure 4C]. The input

layer had spatial dimension of 128 x 128 and a channel depth of

2, incorporating the PET and CT slices. The initial feature set

size was 128. Each subsequent layer was reduced in spatial

dimension by a factor of 2, while its feature size was increased

FIGURE 2

An example of our semi-automated threshold-based segmentation algorithm for the generation of training data.
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by a factor of 2, until a bottleneck layer of size 8 x 8 x 2 x 2048

was achieved. We followed each convolutional layer with a pair

of batch normalization and ReLu activation layers [Figure 4A].

The last layers of the network used a 1 x 1 convolutional layer

with a reduction to 16 features, corresponding to our 16 tissue

classes. This was followed by a batch normalization, SoftMax,

and final pixel classification layer which used a class-weighted

cross-entropy loss function.

Network training strategy

As previously described, a total of 130 baseline PET/CT

imaging studies were utilized. A study-level K-Folds (K=5)

validation strategy was followed for training, validation, and

testing of our network architecture. This resulted in five separate

training/validation/testing sets composed of 104/13/13 studies

each. Using a study-level strategy insured that there was no

mixing of same patient image slices between training/validation/

testing data sets.

Network training utilized a stochastic gradient descent with

momentum (SGDM) solver as well as image augmentation,

where in-plane image translation of ± 5 pixels, in-plane image

rotation of ± 10 degrees, and image scaling between 50% to 200%

of the original size were each independently and randomly

employed for each image during each training epoch.

Post-processing

The raw results obtained running the test data through the

trained CNN were processed in a fully automated manner, not

unlike the fully automated processing of the training data. The

AI-generated annotations were first reconstructed in 3D. The

Reference annotations were projected onto the PET image data

and the mean and standard deviation were measured. A

threshold was calculated using the follow-up assessment

formula [Equation 3], and each tissue annotation was then

cleared of voxels that were not equal to or greater than this

threshold, with those voxels reassigned to the Nominal class.

FIGURE 4

Our CNN Multi-Resolution Architecture, with details of the core Convolutional Layer (A), the Down-Sampling Layer (B). and the Up-Sampling
Layer (C) Multi-Resolution Compound Structures.

FIGURE 3

Example of PET/CT and tissue classification map pairings.
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VOIs of the remaining annotated voxels were generated, and

quantitative analysis of the resulting structures was performed.

Quantitative analysis

The performance of our workflow was assessed at both the

network level as well as the individual study level. At the network

level, we calculated the confusion matrices for each K-Fold run.

With the Lymphadenopathy class occurring in the training set at

an average frequency of one-fifteenth the rate of the

Primary_Lesion class, and both classes representing disease,

we calculated the confusion matrices with the Primary_Lesion

and Lymphadenopathy pooled into a single class, henceforth

referred to as the Disease class.

At the study level, we calculated performance metrics for the

automated detection of the aggregate Disease class. Metrics

include Dice and Jaccard scores (measures of similarity to the

ground truth), as well as a comparison of the measured

SUL-Max.

Results

Network-level evaluation

Our network-level evaluation calculated performance

metrics at the voxel level. The confusion matrices for each K-

Fold session were assembled, with the True Positive (TP), False

Positive (FP), True Negative (TN), and False Negative (FN)

voxel classifications counted, and global performance metrics for

each K-Fold calculated. This was performed on the raw CNN

results, the raw auto-post-processed annotations, and again after

pooling the Primary_Lesion and Lymphadenopathy classes into

a single Disease class. Focusing on the post-processed results

using the pooled Disease class, we calculated the mean values

across the 5 K-Folds for the Sensitivity, Specificity, DICE, and

Jaccard scores [Table 2] for each tissue class.

Study level evaluation

For the study-wise evaluation, each PET/CT study in the test

set was separately analyzed for 3D DICE, Jaccard scores, and

percent of difference in SUL-Max (%DSUL↑) for the Disease

class only using the auto-post-processed results across each K-

Fold. Representative examples illustrating “Truth” vs “AI”

detections are presented here [Figure 5].

Of the 65 total test cases (13 cases across 5 K-Folds), 4 cases

failed to detect any Disease, which concurred with the case

specific Ground Truth (no disease identified at the study-specific

threshold). In addition, 2 other cases detected disease where

Ground Truth failed. These 6 cases were independently reviewed

by experienced nuclear medicine physicians, and the AI results

were determined to accurately reflect the expected outcome of a

typical, manually performed clinical review. For our analysis, we

first calculated the DICE, Jaccard, and %DSUL↑ performance

metrics by removing the studies with incalculable scores

( ‘CLEANED’) [Table 3], then again by replacing the

incalculable scores with perfect scores for that metric (a value

TABLE 2 Tissue specific performance metrics of the workflow in detecting and segmenting disease lesions in test studies averaged over all K-folds.

Tissue Class Sensitivity Specificity DICE Jaccard

BACKGROUND 0.99 0.98 0.99 0.98

NOMINAL 0.98 0.99 0.98 0.96

BLADDER 0.96 1.00 0.85 0.74

BOWEL 0.78 1.00 0.59 0.42

BRAIN 0.99 1.00 0.92 0.85

BROWN_FAT 0.78 1.00 0.32 0.20

HEART 0.96 1.00 0.95 0.90

KIDNEY 0.94 1.00 0.88 0.79

OTHER_METASTASIS 0.60 1.00 0.14 0.08

PRIMARY_LESION 0.96 1.00 0.94 0.89

SALIVARY 0.97 1.00 0.66 0.50

SPLEEN 0.63 1.00 0.20 0.12

THYROID 0.81 1.00 0.61 0.45

NOT_SIGNIFICANT 0.83 1.00 0.12 0.07

REFERENCE 1.00 1.00 1.00 1.00

The bold and italicized data are the results of the Disease class, which is the primary focus of our work.
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of ‘1.0’ for DICE and Jaccard scores, a value of ‘0%’ for the

%DSUL↑) (‘CORRECTED’) [Table 4].

Discussion

Artificial intelligence is increasingly playing a significant role

in image analysis within the field of radiology (1). Many are

building systems that can assist and augment radiologic

interpretations (2). [18F]FDG PET/CT plays a significant role

in detection and management of a variety of oncologic

abnormalities (21). Breast cancer is often FDG-avid on PET/

CT and is a leading cause of cancer and cancer-related mortality

in women (22). While studies have shown that [18F]FDG PET/

CT is not effective in the evaluation of local disease, it plays a

significant role in the management of patients with locally

advanced disease and inflammatory carcinoma (23). Patients

with clinical stage IIB disease (T2N1/T3N0) or higher may also

benefit from evaluation by [18F]FDG PET/CT (24). Finally,

quantification by [18F]FDG uptake on PET/CT after initiating

therapy may identify responders from non-responders early,

allowing new therapies to be pursued for those non-responders

(15, 19). AI-augmented analysis of PET examinations may, in

addition to aiding radiologic detection and therapeutic

monitoring, provide additional data that may not be

discernable from qualitative analysis but that can direct

therapeutic regimens for individual patients.

As evidenced by the results, our AI-based framework had a

high rate of voxel-wise accuracy at classifying most FDG avidity.

In the evaluation of the test data, conducted by trained readers, it

TABLE 4 Performance metrics for test data with non-scorable studies assigned perfect scores.

CORRECTED Test Data

N=65 DICE JACCARD %D ↑SUL

Average 0.92 0.86 0%

St. Dev 0.11 0.15 5%

Median 0.95 0.91 0%

TABLE 3 Performance metrics for test data with non-scorable studies removed.

CLEANED Test Data

N=59 DICE JACCARD %D ↑SUL

Average 0.91 0.85 0%

St. Dev 0.12 0.15 5%

Median 0.93 0.88 0%

FIGURE 5

Examples of “Truth” vs “AI” detections and quantification of disease in two test cases.
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demonstrated very high sensitivity and specificity at identifying

avidity associated with breast cancer.

The performance of this framework was achieved utilizing

traditional, standards-based image processing in concert with

the DL-CNN. The combination of these methods, along with a

heterogeneous training dataset, achieved a level of automated

performance that neither method on its own could, especially

considering the relatively low number of studies and samples per

class used (25) (26). The PERCIST v1.0 framework provided an

objective methodology for the generation of training data as well

as the post-processing refinement of the AI-generated

classifications. The DL-CNN provided the classification key

that was necessary for automated analysis.

Conclusion

This pilot work has demonstrated the ability of an AI-based

workflow, incorporating standards-based data processing paired

with DL-CNNs, to specifically identify malignant breast tissue as

demonstrated by [18F]FDG avidity in a PET/CT study. This

supports the idea that AI can be trained to recognize specific

tissue signatures in molecular imaging studies using

radiopharmaceuticals. Future work will explore the

applicability of these techniques to other disease types and

alternative radiotracers, as well as explore the accuracy of fully

automated quantitative analysis and response assessment.
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24. Groheux D, Hindié E, Delord M. Prognostic impact of 18F-FDG PET-CT
findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst (2012)
104:1879–87. doi: 10.1093/jnci/djs451

25. Schnack HG, Kahn RS. Detecting neuroimaging biomarkers for psychiatric
disorders: Sample size matters. Front Psychiatry (2016) 7. doi: 10.3389/
fpsyt.2016.00050

26. Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, et al.
Sample-size determination methodologies for machine learning in medical
imaging research: A systematic review. Can Assoc Radiol J (2019) 70:344–53. doi:
10.1016/j.carj.2019.06.002

Leal et al. 10.3389/fonc.2022.1007874

Frontiers in Oncology frontiersin.org09

https://doi.org/10.1148/radiol.2017162664
https://doi.org/10.1016/j.jacr.2017.08.007
https://doi.org/10.1016/j.jacr.2019.05.034
https://doi.org/10.1177/1536012119869070
https://doi.org/10.1088/2057-1976/aaef03
https://doi.org/10.1088/2057-1976/aaef03
https://doi.org/10.1109/JPROC.2019.2936809
https://doi.org/10.1088/1361-6560/aaf5e0
https://doi.org/10.1088/1361-6560/aaebd0
https://doi.org/10.2967/jnumed.114.144741
https://doi.org/10.1200/JCO.2018.78.7986
https://doi.org/10.1007/s10278-019-00255-7
https://doi.org/10.1007/s10278-019-00255-7
https://doi.org/10.2967/jnumed.108.057307
https://doi.org/10.1016/j.neunet.2019.08.025
https://doi.org/10.1053/j.seminoncol.2010.11.012
https://doi.org/10.1053/j.seminoncol.2010.11.012
https://www.cdc.gov/cancer/breast/statistics/index.htm
https://doi.org/10.1148/radiol.12110853
https://doi.org/10.1093/jnci/djs451
https://doi.org/10.3389/fpsyt.2016.00050
https://doi.org/10.3389/fpsyt.2016.00050
https://doi.org/10.1016/j.carj.2019.06.002
https://doi.org/10.3389/fonc.2022.1007874
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Automated lesion detection of breast cancer in [18F] FDG PET/CT using a novel AI-Based workflow
	Please let us know how this document benefits you.
	Authors

	Automated lesion detection of breast cancer in [18F] FDG PET/CT using a novel AI-Based workflow
	Introduction
	Methods
	PET imaging studies
	Software and hardware environment
	Training data preparation
	Neural network architecture
	Network training strategy
	Post-processing
	Quantitative analysis

	Results
	Network-level evaluation
	Study level evaluation

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	References


