5,760 research outputs found

    Quasi dynamical symmetry in an interacting boson model phase transition

    Full text link
    The oft-observed persistence of symmetry properties in the face of strong symmetry-breaking interactions is examined in the SO(5)-invariant interacting boson model. This model exhibits a transition between two phases associated with U(5) and O(6) symmetries, respectively, as the value of a control parameter progresses from 0 to 1. The remarkable fact is that, for intermediate values of the control parameter, the model states exhibit the characteristics of its closest symmetry limit for all but a relatively narrow transition region that becomes progressively narrower as the particle number of the model increases. This phenomenon is explained in terms of quasi-dynamical symmetry.Comment: 4 figure

    A conceptual framework for circular design

    Get PDF
    Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water) are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX) (e.g., design for resource conservation, design for slowing resource loops and whole systems design) and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy

    Double beta decay and the proton-neutron residual interaction

    Get PDF
    The validity of the pn-QRPA and -RQRPA descriptions of double beta decay transition amplitudes is analyzed by using an exactly solvable model. It is shown that the collapse of the QRPA is physically meaningful and that it is associated with the appearance of a state with zero energy in the spectrum. It is shown that in the RQRPA this particular feature is not present and that this approach leads to finite but otherwise spurious results for the double beta decay transition amplitudes near the point of collapse.Comment: LaTeX, 10 pages plus 3 fugures as LaTeX files. Accepted for publication in Physics Letters

    Prelaunch testing of the GEOS-3 laser reflector array

    Get PDF
    The prelaunch testing performed on the Geos-3 laser reflector array before launch was used to determine the lidar cross section of the array and the distance of the center of gravity of the satellite from the center of gravity of reflected laser pulses as a function of incidence angle. Experimental data are compared to computed results

    Single- and double-beta decay Fermi-transitions in an exactly solvable model

    Full text link
    An exactly solvable model suitable for the description of single and double-beta decay processes of the Fermi-type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons in a single j-shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the hamiltonian in the quasiparticle basis (qp) and with the results of both the standard quasiparticle random phase approximation (QRPA) and the renormalized one (RQRPA). The role of the scattering term of the quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the collapse of the QRPA. The RQRPA and the qp solutions do not include this zero-energy eigenvalue in their spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to Physcal Review

    Classical mappings of the symplectic model and their application to the theory of large-amplitude collective motion

    Full text link
    We study the algebra Sp(n,R) of the symplectic model, in particular for the cases n=1,2,3, in a new way. Starting from the Poisson-bracket realization we derive a set of partial differential equations for the generators as functions of classical canonical variables. We obtain a solution to these equations that represents the classical limit of a boson mapping of the algebra. The relationship to the collective dynamics is formulated as a theorem that associates the mapping with an exact solution of the time-dependent Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective motion. The models thus obtained also provide a test of methods for constructing an approximately decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our earlier works reproduces the main results of the theorem.Comment: 23 pages, LaTeX using REVTeX 3.

    GaAs(111)A and B in hydrazine sulfide solutions : extreme polarity dependence of surface adsorption processes

    Full text link
    Chemical bonds formed by hydrazine-sulfide treatment of GaAs(111) were studied by synchrotron photoemission spectroscopy. At the B surface, the top arsenic atoms are replaced by nitrogen atoms, while GaAs(111)A is covered by sulfur, also bonded to underlying gallium, despite the sulfide molar concentration being 103 times smaller than that of the hydrazine. This extreme dependence on surface polarity is explained by competitive adsorption processes of HS- and OH- anions and of hydrazine molecules, on Ga- adsorption sites, which have distinct configurations on the A and B surfaces

    Effective dynamics of an electrically charged string with a current

    Full text link
    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.Comment: 14 pages, 3 figures, format changed, minor change
    • …
    corecore