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PRELAUNCH TESTING OF THE GEOS-3 LASER REFLECTOR ARRAY

P. O. Minott, M. W. Fitzmaurice, J. B. Abshire,
and H. E. Rowe

Goddard Space Flight Center
Greenbelt, Maryland

INTRODUCTION

This report describes the results of tests performed on the Geodetic Earth Orbiting Satellite
(Geos-3) laser retrodirector array to determine its lidar cross section and the distance of the
center of gravity of the satellite from the center of gravity of the reflected laser pulses. Tests
were performed from January through February 1975 by personnel of the Optics Branch
(Code 722) and Laser Data Systems Branch (Code 723) at Goddard Space Flight Center
(GSFC). Much of the theory behind these tests is described in the documents listed in the
reference section.

The Geos-3 array was designed in early 1971. Previous arrays on Geos-1 and -2 had worked
quite successfully but, due to the increasing precision and power of the laser tracking net-
work, an array was desired that would give minimum pulse spreading and could be tracked
to within 20 degrees of the horizon. The Geos-1 and -2 arrays were both flat arrays that
gave excellent performance at zenith (58 X 106 and 100 X 106 m2 , respectively). However,
these arrays degraded very rapidly with zenith angle and were not useful much beyond 50
degrees, although occasional tracking down to 60 degrees had been recorded. Several de-
sign configurations were analyzed with regard to their various trade-offs, and it was decided
that the cube corners should be placed in a ring on the surface of a cone with the cone axis
coincident with the z or gravity gradient axis of the spacecraft. The trade-off analysis shown
in figures 1 and 2 indicated that a 45-degree cone'was the best possible compromise and was
therefore selected for Geos-3. As shown in the figures, the flat array (0 degrees) gives far
superior signal strength near zenith, but quickly degrades. The crossover point at which the
45-degree conical array becomes superior to the flat array occurs at a zenith angle of about
45 degrees. One desirable feature of the 45-degree conical array is that the signal strength
is relatively constant over a large range of zenith angles. This occurs because the array has
a small cross section where the R4 space loss is low, and has a much higher cross section at
large zenith angles where the space loss is high. In order to minimize the pulse spreading by
the array, it was configured as a thin ring of only three rows of cube corners. The cross
section of the point on the ring closest to the laser is, in all cases, much stronger than that
of other points on the ring, and this gives rise to a reflected pulse with a sharp rise time and
rapid decay that allows accurate ranging. Because of the symmetry and geometry of the
array, it produces reflected pulses, the centroid of which can be determined to an accuracy
of ±1 cm. This greatly exceeds the ±15-cm accuracy originally desired when the array was
designed.



SIGNALS FROM GEOS-3
REFLECTOR PANELS
VERSUS TILT ANGLE
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Figure 1. Geos-3 reflector array design, 0° to 60°
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Figure 2. Geos-3 reflector array design, 60° to 72°



DESCRIPTION OF THE ARRAY

The Geos-3 satellite is shown in figure 3. The satellite is gravity-gradient stabilized and has
the following orbital parameters:

Mean Altitude 843 km (500 nmi)

Inclination 115 degrees

Eccentricity 0.006 (maximum)

Orbit Period 101.8 minutes

The cube corners are mounted in a 45-degree conical ring located around the periphery of
the Earth-facing side of the spacecraft. The array consists of 264 cube corners whose posi-
tions are listed with respect to the satellite center of mass in table 1. The position refers to
the position of the vertex of the cube corner. The cube corners are fused silica with a 3.5-
cm hexagonal entrance pupil. Reflective faces are silvered, and the dihedrals are 90 degrees
0 minutes 2.0 ± 0.5 seconds. Additional details on the array configuration are included in
Appendix A.

Figure 3. Geos-3 satellite.
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SATELLITE CROSS SECTION

Definition of Terms

The number of photons received from a retroreflector array by a laser ranging system is ob-
tained by the following relation:

(M 0T
2 R«

where

N = number of photons received
r\ = quantum efficiency of receiver phototube
ET = energy of transmitted pulse
DR = diameter of receiver optics
7A = transmission of atmosphere
po = optical efficiency of transmitter and receiver
a = radar cross section of the target
hv = energy of a photon
0T = transmitted beam divergence
R = range to the target

The derivation of this equation is shown in Appendix B. Of all these terms only one (a) is
a parameter of the targets. Radar cross section defines the effectiveness of the array from a
ranging standpoint, and therefore, one purpose of these tests was to determine the cross
section, which is defined as:

a = pAG

where p is the optical efficiency, A, the reflective area, and G, the gain of the array. Gain,
in turn, is defined as the intensity of the reflected radiation in the desired direction divided
by the intensity that would have occurred if the reflected energy had been uniformly dis-
tributed over 4ir steradians.

In general, the cross section is a function of the aspect angle of the laser beam with respect
to the array, and the position of the receiver in the far-field pattern of the array. Since the
Geos-3 array is rotationally symmetric about the Z axis, the laser incidence angle can be de-
fined by one angle (0L) measured with respect to the Z axis.

Due to the motion of the satellite in orbit, an effect known as the velocity aberration causes
the reflected radiation from the satellite to be displaced angularly from the transmitter/
satellite axis. For the Geos-3 satellite at an altitude of 843 km, this displacement amounts
to 49.6 IJLI, and therefore cross section must be measured at this angle. If we define a polar
coordinate system about the satellite transmitter axis, in general, the far-field pattern will
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have minor variations in azimuth as well as the major variations with polar angle. These
minor variations with azimuth have not been taken into account in this analysis except
through a listing of the maximum and minimum values that occur at different azimuths.

Theoretical Analysis

An analysis of the cross section as a function of laser incidence angle for a velocity aberration
of 49.6 jur was performed at a wavelength of 6943 A using the RETRO program which cal-
culates the performance of laser retroreflector arrays. Results are shown in figure 4 and
table 2. Due to the design of the cube corners, these results are applicable for any wave-
length in the 4000-to 7000-A visible range with only minor changes. To convert the data
to other wavelengths, the following equation should be used.

(6.943 X lO'7)2

a\ ~ °6943 ~y

where X is in meters.

-.ECTION
1 . C O O

0.d6C
0. "40
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o.-oo
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O.?80
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:.i4o
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3.060
?.04C
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Figure 4. Normalized cross section versus incidence angle.
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Table 2
Cross Section versus Incidence Angle

INC1CENCE CROSS INCIDENCE

(DEGREES)
0
1
p

3
4

6
7
B
9

10
11
12

14
15
1 6
17
in
19
20

22
23
24

25
2£
27
28

2 6
(METERS X 10 )

2*9912
i . nn*7
3.1093
3.2550

3.6550
3.9055
4 . iHB5
4.4641
4.7374
5.0104
5.3046

5.9479
6.3185
o. r i i 9
7.1238
7.R5O?

7.9866
9.4350

9.3S32
9.8149

1 u • 27B7
10.7420
1 1 .24Q5
11 .7905
12.3524
lP.Q»Rt

(DEGREES }
31
3?
3J
34
35

37
38

40
41
42
4 3

45
46

43
43
50
51

53
54
55
56
57
58
59

2 6
(METERS X 10 )

14.1 fez 5
14.8005
1^.44??

16.1614
16.9404

IS. 5410
19.3074

20.7066
21 .3070
21.7753
22.1 026

22.2340
21.371 9

20.6194
19. BOB 4
18.8931
17.9429

15.9897
15.0056

13.1418
12.3 03S
1 1.5554
10.8249

( tEGREES)

62
63
64
65

67
68

70

72
73

75
76

78
73
80
SI

83
84
B5
Kb
87
8S
89

2 6
(METERS X 10 1
V.4O6 J

8. 8439
a. 251 1
7.6896
7.1667

6.2239
J.7757

4.9218
4. 51 92
4.1399
3.7766

3.1129
2.8152

2.2943
2.0576
1.8337
1.6188

1.2085
1.0268
u .0654
0.7214
OjSSAl
0.4882
0.3938
0. 11 17

Experimental Apparatus and Procedure

Optical Systems

The optical system used in these tests is shown in figure 5. A helium neon laser was passed
through the spatial filter and beam expander to generate a 50-mm diameter collimated laser
beam. This radiation then passed through a beam splitter to a second objective which focused
the beam at the focus of an 86-cm diameter f/9.31 aluminized parabola. A small aluminized
flat was used near the focus of the parabola to fold the system. The output of this system
was a highly collimated 86-cm diameter laser beam. One quarter (2 panels) of the Geos-3
array was mounted on a rotating platform in such a manner that the array was fully illumi-
nated, and could be rotated by 90 degrees around an axis perpendicular to the symmetry
axis of the full array. Although only one quarter of the array was used, the resulting far-
field patterns were the same (except for intensity) as those from the full array, due to sym-
metry. Because of the array geometry, only half of the array is active at one time (except
for within 5 degrees of the symmetry axis). Therefore, the results of the tests must be scaled
by 2 to obtain the final result except for near-zero incidence angles where the scale factor
was 4. Tests were performed at 5-degree increments of incidence angle from 0 degrees to 60
degrees and therefore the scale factor of 4 was applied only to the 0-degree result.

Reflected radiation returned to the parabola and back through the system to the beam-
splitter where about half of the radiation was directed into a 0.91-m focal length collimator.

12



The effective focal length of the system in the reflected mode was

f = 0.91 X
81.57

0.45
= 16.5 m

Since a 100-m focal length was desired, the image was magnified by a microscope objective
to obtain the proper image scale.

The flat shown mounted behind the array served two functions—scale calibration and cross-
section calibration. The flat was exposed to the collimated beam by removing the array, and
was aligned to produce an image at the same position as the center of the pattern from the
array. A mask was then placed over the flat containing a double slit with a spacing of 63.28
mm. This produced a Young's interference pattern in the far field with a spacing of 10 jur
per cycle. Since the desired focal length was 100 m, focal length calibration was accomplished
by adjusting the microscope objective until a focused image with a spacing between fringes
of 1 mm was accomplished. Since about 30 fringes were visible and measurement of the
fringes could be made to about ± 1/4 fringe, the net accuracy in determining image scale was
approximately 1 percent.

GEOS ARRAY FOLDING FLAT

450-mm FOCAL LENGTH OBJECTIVE

910 mm FOCAL LENGTH OBJECTIVE

86-cm DIAMETER f/9.31
PARABOLA

FINAL FOCAL
PLANE
(100-m FOCAL LENGTH)

BEAMSPLITTER

50-mm DIAMETER
COLLIMATOR

MICROSCOPE
OBJECTIVE
(6.06 X MAG.)

—A— SPATIAL FILTER

•HELIUM-NEON
LASER

Figure 5. Optical system for cross-section tests.
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Conversion of intensity in the focal plane into units of cross section was accomplished by
measuring the intensity from a circular aperture in a mask covering the flat. Since the cross
section for a flat is

a =-r^— P

where A is the area of the flat, X is wavelength, and p is the optical efficiency, the area of the
aperture could be calculated, and from this, the intensities in the focal plane related to cross
section. An optical efficiency of 91 percent was used for the flat to account for the reflect-
tion loss.

Image Scanner

A tape-driven mechanical scanner was used to scan the final image plane. This scanner sup-
ported a photomultiplier with a helium-neon filter and a small pinhole. The system was
constructed so that the pinhole was accurately in the focal plane and only light going through
the pinhole could reach the photomultiplier. The scanner covered a 25- by 25-mm area in
25 lines spaced 1 mm apart. The scan was performed in a zig-zag manner, traversing from
left to right, stepping down 1mm, traversing from right to left, etc., until the area was covered.
Since the scale was 10 jur per mm, this provided 25 scans at 10-pir increments. The pinhole
was approximately 0.25 mm in diameter (or 2.5 /xr in angular width).

Image Scanner Readout

Potentiometers were attached to the scanner to read out image position. The photomultiplier
output and the potentiometer outputs were simultaneously recorded on a four-channel chart
recorder as the scan proceeded. A sample chart recording is shown in figure 6. A photograph
of the pattern is shown in figure 7. On the top of figure 6, in track #1, the intensity (cross
section) as a function of time is shown. The second track shows the vertical position of the
scanner. The scale of the chart recording is twice the image scale, so that each line increment
appears as a 2-mm displacement. The bottom track shows the horizontal position of the
pinhole. Where the line is sloping upward from left to right, the scan was from left to right,
while where it slopes downward, the scan is from right to left. The flat section at the top
and bottom of this track are the times when the scanner is stepping from one line to the
next. A theoretical calculation of the image profile can be seen in figure 8. The data shown
in figures 6 and 7 were taken for a reference array consisting of 69, 15-mm hexagonal
diffraction-limited cube corners of the Navigational Technology Satellite (NTS-1) type. The
peak cross section is 70.5 X 106 m2 for this array.

Summary of Satellite Cross-Section Measurements

The image scanner readouts are shown in detail in Appendix C. A sample scan across the center
of the far-field diffraction pattern for an incidence angle of 45° is shown in figure 9. Due to
the dihedral spoiling built into the cube corners, the far-field diffraction has a toroidal which,
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Figure 7. Far-field pattern photograph.

when shown in profile, appears as two peaks occurring at ± 50 pr from the retrodirected
direction. This splitting places the maximum cross section at the velocity aberration angle
and maximizes the signal for the given size and number of cube corners.

An analysis of the image plane scans gives the cross section as a function of incidence angle
at 49.6 HT off-axis as shown in table 3 and figure 10. The maximum and minimum values
found in a circle in the far-field diffraction pattern (FEDP) with a radius of 49.6 HT are
shown in figure 10 by the vertical bars. Values calculated with the RETRO program are
shown by open circles. While the experimental and calculated curves show the same general
shape, there is an obvious difference in their absolute magnitude. Except for incidence angles
less than 20 degrees, the experimental values tend to be 50 to 70 percent higher than the
calculated values. Because the experimental values were measured at 6328 A, diffraction

1.0

0.4 -

0.2 -

16

Figure 8. Comparison of measured and computed far-field patterns.
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Table 3
Cross Section versus Incidence Angle - Geos-3

Incidence Angle
(Degrees)

0

10

20

30

40

45

50

60

70

Cross Section - Meters2 X 106

Measured (6328 A)
Min -- Max

1.9 - 1.9

1.9 - 5.6

9.3 - 19

19 - 30

24 - 46

28 -46

28 -37

9.3 -- 19

Calculated (6943 A)

3.0

4.7

8.4

14.0

21.0

22.0

19.0

10.0

4.9

Figure 10. Cross section versus incidence angle.

18



could cause as much as a 20-percent increase, but this does not account for all of the observed
differences. The remainder can be accounted for by the fact that the calculations were per-
formed for the case of satellite velocity normal to the incident radiation, which causes the
maximum velocity aberration and minimum effective cross section. Therefore close agree-
ment between the minimum experimental and wavelength-corrected calculated values would
be expected. In table 4 and figure 11, calculated cross sections have been increased by 20.4
percent to account for the wavelength difference and are compared to the minimum experi-
mental values. As expected, the agreement is very good so that one curve can reasonably
represent both experimental and calculated values. The measured values of cross section
in table 3 and figure 10, therefore, are in close agreement with the expected values, and are
the values which should be used in all range equation solutions. The difference between the
maximum and minimum cross-section values is due to the asymmetry caused by diffraction.
For operation at wavelengths other than 6328 A, the cross section should be multiplied by the
following factor if maximum precision is required (A in Angstroms). However, such accuracy

F =

is seldom needed in calculations of signal strength.

Table 4
Comparison of Wavelength Adjusted and Experimental Cross

Section versus Incidence Angle - Geos-3

Incidence Angle
(Degrees)

0

10

20

30

40

45

50

60

70

Cross Section - Meters2 X 106

Measured (6328 A)

1.9

1.9

9.3

19

24

28

28

9.3

—

Calculated* (6328 A)

3.6

5.6

11

17

25

26

23

12

5.9

Increased by 20.4 percent from values of table 3 to account for diffraction effects.
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6328 A

_L J_ _L
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Figure 11. Comparison of wavelength adjusted calculated and
experimental cross section versus incidence angle.

TARGET SIGNATURE TESTS

In these tests, the satellite array was evaluated in terms of the amount of temporal spreading
and distortion imposed on a subnanosecond pulse, and the value and attitude dependence
of the range correction. The instrumentation system and the tests' results are described in
the following sections.

Optical System

The optical system used in these tests is shown schematically in figure 12. A Nd: YAG*
laser with an external pulse selector furnished a 10-kHz pulse train at 0.53 ̂ m. Each pulse
had a width of about 140 ps (FWHM) and an energy of about 10'12 joules. This beam was
spatially filtered and recollimated at 50-mm diameter using a Spectra-Physics #331/332
telescope. This beam was sent through a 4545 beam splitter (used for transmitter-receiver
isolation) and brought to a focus within a few millimeters of the front surface of the folding
flat. This image plane was located precisely at the prime focus of the large (86-cm) parabola,
so that after passing through focus, the beam expanded, filled the parabola, and was recol-
limated. This collimated beam then illuminated either the 60-cm reference flat (used for
alignment and calibration) or the satellite and reference arrays. The return signal traverses
the exact same path due to the retrodirective property of cube corners, and is separated
from the transmitted signal by the beam splitter.

*Nd: YAG = neodymium yttrium aluminum garnet.
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, GEOS ARRAY

REFERENCE ARRAY

450-non FOCAL LENGTH COLLIMATING OBJECTIVE

FINAL IMAGE PLANE

8.16 m FOCAL LENGTH
PARABOLA 88-cm
DIAMETER

~2_~^_-^--~Ur JTJE— = DETECTOR

MICROSCOPE \
OBJECTIVE N '

16.5-cm FOCAL LENGTH OBJECTIVE

ADJUSTABLE
FIELD STOP

BEAM EXPANDER/
TELESCOPE WITH
SPATIAL FILTER

(SYNCHRONIZATION)
TO SIGNAL PROCESSOR

Figure 12. Optical system for target signature tests.

The combination of the 16.5-cm f.l objective and the microscope objective controls the re-
ceiver system focal plane scaling; in these tests, an equivalent focal length of 30 m was main-
tained in the final image plane. This resulted in an image plane scaling of 33.3 microradians
per millimeter. Two sizes of field stops were used during these tests; when the full far-field
pattern was being detected, a stop of 3.25-mm diameter (108 jur) was installed; when a point
in the far field was being measured, a stop of 0.41-mm diameter (13.7 jur) was used. The
energy passing through the field stop was collected by a simple lens and focused onto the
photocathode of the detector. The field stop, lens, and detector were mounted on a common
base that had 2-axis linear motion with precision better than 0.01 mm. Mounting these
pieces on a common base ensured that the same portion of the photocathode was illuminated
throughout the tests, thereby obviating concern about position-dependent biases induced
by the detector. The electrical signal from the detector, as well as a synchronization signal
from the laser were sent to the signal processor. The satellite array and a reference flat
array were attached to a common mount with vertical axes of rotation as shown in figure 12.
A picture of these two units as mounted is shown in figure 13, and a picture of the overall
optical system is shown in figure 14. For the pulse distortion tests, each pulse sent out by
the laser resulted in two received pulses; one pulse is reflected by the flat reference array,
and the second is reflected by the satellite array.
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Figure 13. Mounting configuration for Geos and reference arrays.

Figure 14. Overview of target signature test set-up.
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The reference array is flat and is in all cases aligned normal to the incident beam. It induces
zero temporal spreading, therefore the detection of this pulse gives a direct reading of the
bandwidth and resolution of the entire system. The satellite array pulse that is detected is
compared to the reference pulse, and any differences in shape are attributed to the satellite
array, since all other elements in the system are common to both pulses. Waveform meas-
urements were made at Geos array orientations from 0 to 65 degrees, with the reference
array adjusted for normal incidence at each Geos array setting. Range correction measure-
ments were made in a similar way, but the information of interest in this case is^the relative
position (in time) of the two reflected pulses. Knowing the properties of the cube corners
in the reference array, the point in space from which the reference pulses are reflected can
be defined precisely. By physically measuring the location of reference and satellite arrays,
and knowing the measured location of the satellite center of mass with respect to mounting
points on the Geos array, the range correction can be evaluated for any array (that is, satel-
lite) orientation.

Laser Transmitter

The details of the laser subsystem used in these tests are shown in figure 15. A continuous
wave (cw) pumped Nd: YAG laser is mode locked using an acousto-optic loss modulator.
With the modulator driven at 200 MHz, the 1.06-jum output pulse train occurs at a 400 MHz
rate and has an average power of about 0.1 W.

This beam is brought to a focus in a 5-mm cube of barium sodium niobate which converts
about 1 percent of the incident power into the second harmonic frequency, which is at a
wavelength of 0.53 jum. All target signature tests were conducted at this wavelength, with
the fundamental wavelength being used only for monitoring laser amplitude and pulse sta-
bility. The fundamental and second harmonic frequencies are separated by a dichroic beam
splitter and the 0.53-pt pulse train was directed into a high speed electro-optic shutter. This
unit had a rise time of about 1 ns and was therefore able to select single pulses for trans-
mission, while blocking adjacent pulses (with an extinction ratio of about 20:1). The elec-
trical trigger signal for the gate was derived from the 200-MHz drive to the mode locker;
synchronization between the synthesizer signal, the counted down gate trigger, and the
optical pulses was maintained to better than 50 ps throughout the testing.

The high speed shutter was required in these tests for two reasons. First, the basic interpulse
spacing of the laser was 2.5 ns, and this was uncomfortably close to the width of the com-
posite waveform from the Geos and reference arrays. If the received waveform was allowed
to repeat on a 2.5-ns period, system resolution would have been degraded due to interpulse
effects. Secondly, the maximum average current capability of the receiver detector would
have been exceeded with signal levels of about 15 photoelectrons per pulse, if the input
rate were 4 X 108 per second.

So the inclusion of the gate permitted higher resolution in the wave-form analysis and also
permitted operation at large optical signal-to-noise ratios (SNR).
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The output 0.53-n radiation from the optical gate consisted of a short (0.14-ns) pulse once
every 0.1 ms. The energy level per transmitted pulse was typically 10~12 joules.

, PHOTODIODE

. TO SAMPLING
SCOPE MONITOR

SECOND HARMONIC
GENERATION CRYSTAL

TRANSMITTER

OUTPUT
10-kHz RATE,
140-ps PULSE WIDTH

SYNCHRONIZATION
SIGNAL TO
DATA PROCESSOR

HIGH I , ,
SPEED A* <*T •*-

OPTICAL (I -
GATE 0.53 »

DC POWER
SUPPLY

ND: YAG ROD

Figure 15. Laser transmitter subsystem.

Signal Detection and Processing

The detection and data processing subsystem is shown schematically in figure 16. The de-
tector was selected on the basis of maximum bandwidth and sensitivity at the 0.53-ju wave-
length. Its performance chacracteristics are listed as follows:

Multialkali 6-Stage Static Crossed Field Photomultiplier
(Varian#153A)

Photocathode/Window Materials

Cathode Diameter

Cathode Sensitivity

Gain

Number of Stages

Dynode Material

Anode Dark Current

Output Current

S-20/Sapphire

5.08 mm (0.2 in.)

10%typ.at5300A
5%typ.at6300A

10s typ.

6

BeCu Alloy

3 X lO'9 typ.@20°C

250 /zA max. continuous
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Multialkali 6-Stage Static Crossed Field Photomultiplier (Continued)
(Varian#153A)

Bandwidth, 0 to -3 dB

Anode Rise Time (10% to 90%)

Output Coupler

Dimensions, housed with magnets

Weight

Operating Voltages

DC to 2.5 GHz

150ps

50 ohm coaxial OSM

8.3 cm X 6.7 cm X 15.9 cm long
(3-1/4 in.) X (2-5/8 in.) X (6-1/4 in.) long

1.8 kg (4 Ibs.)

-2900 Vdc typ.
+ 950 Vdc typ.

Photocathode:
Rail:

DETECTOR

(VARIAN
#153A)

SAMPLING
SYSTEM

(TEK. S-6,
7S11.7T11)

TRIGGER SIGNAL
FROM
OPTICAL
SHUTTER

WAVEFORM
DIGITIZER

(TEK.
R7912)

COMPUTER
(DEC PDF

1140)

DISPLAY
(TEK. #4010)

HARD
COPY

(TEK. #4610)

Figure 16. Detection and data processing.

The detector output signal, along with a synchronized trigger signal from the transmitter
shutter, was sent to a Tektronix sampling system. The sampled analog waveforms developed
at this point were digitized by a Tektronix R7912 and stored in the computer. The R7912
supplied waveforms to the computer at a rate of about 10 per second. Typically, for a given
set of test parameters, 200 waveforms were input to the computer; they were averaged by
the computer; and the resultant waveform was delivered to the three outputs (that is, mag-
netic tape, cathode ray tube display, and hard copy). Following the data taking, the averaged
waveforms were recalled from the cassettes and analyzed in terms of pulse shape characteris-
tics and, in those cases where both the Geos and reference arrays were illuminated, interpulse
spacing.
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Pulse Spreading

The physical mechanism that is responsible for pulse spreading is shown schematically in
figure 17. When a single laser pulse is incident on the satellite, each cube corner reflects a
signal independently of all other cube corners. Therefore, the return signal is a train of
pulses; the temporal spacing between pulses is determined directly by the geometry of the
array and the amplitudes are determined by the effective aperture of the individual reflectors
(since cube corners operating off-normal have less effective area than those at normal in-
cidence). Disregarding waveform variations due to coherency effects,* the photodetector
output signal can be considered as the convolution of its impulse response (line c, figure 17)
with the return pulse train (line b);' this output signal is clearly much wider than that
which would be obtained from either a single cube corner, or a flat array of the cube corners
aligned normal to the incident beam.

Average return waveforms from a typical data run for the Geos-3 array at incidence angles
from 0 degrees to 65 degrees are shown in figure 18 a through i, with the system response
given by j. Pulse broadening in excess of that shown in j must be attributed to the satellite
array since all other elements of the measurement are the same in each case. It is important
to note that essentially all the return signal from the satellite was detected in this case since
the receiver field of view was about 104 radians. Table 5 lists the rise time (10 percent to
90 percent), the fall time (90 percent to 10 percent), and pulse width, (FWHM-"-) for both
the satellite and reference arrays.

Making the usual linear systems assumption that measured rise and fall times are the root of
the sum of the squares of the individual contributors in the system, the rise and fall times
contributed just by the satellite array have been calculated and are listed in table 6.

These data can be used for calculations of receiver pulse characteristics for transmitter pulses
of arbitrary rise and fall time.

*The relative phase angles associated with the optical fields of adjacent pulses are typically on the order of 10 radians.
Since it is not practical to obtain the phase angle between the individual reflectors with precision of an optical wave-
length, the pulses in the return signal must be considered to be randomly phased. At those points in time where two
or more pulses overlap (for example, pulses 6 and 7 on figure 17), the resultant amplitude depends on the relative phase
difference. Since this quantity is probabilistic, the pulse shape becomes random. The average pulse shape, however, is
the same as would be obtained by incoherent addition of signal energy. The experimental results reported in this docu-
ment are based on average waveforms, and therefore cannot be used to infer the pulse-to-pulse waveform variations re-
sulting from coherent effects. Such data have been obtained by P.O. Minott using digital computer models of the sys-
tem, and are available on request.

'In a rigorous sense, that is true only for the case of very high optical signaHo-noise ratios (SNR). At low signal levels,
the randomness induced by poissonian photoemission causes another degree of randomization of the output waveform.
The data reported here result from averaged waveforms built up using large numbers of optical pulses (typical 10 ). This
averaging is equivalent to operating at very high SNR.

*FWHM = Full width at half maximum.
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a. TRANSMITTED PULSE

b. REFLECTED PULSES

c. DETECTOR IMPULSE RESPONSE

SECTION OF SATELLITE
REFLECTOR ARRAY

d. DETECTOR OUTPUT

Figure 17. Array-induced pulse spreading.

Table 5
Measured Geos-3 Pulse Characteristics

Satellite Array
Orientation

degrees

0

10

20

30

40

45

50

60

65

Reference
Array

Rise
Time (ps)

440

430

400

400

410

410

390

420

400

320

Fall
Time (ps)

480

670

810

930

1020

1020

1030

930

930

490

Width
FWHM (ps)

580

630

720

760

780

760

720

700

660

380
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GEOS ARRAY ORIENTATION

0° 10° 20° 30°

WAVELENGTH : 0.530
RECEIVER FOV: 10" RADIANS

Figure 18. Geos-3 average pulse response.

The discussion of the pulse broadening mechanism presented in connection with figure 17,
as well as the test data presented in figure 18 and tables 5 and 6 assumes that the detector
receives all the energy reflected from the satellite. In fact, operational tracking systems
have aperture sizes of less than 1 m, and the spot size on Earth of the satellite returns is
generally a few hundred meters. Therefore, a series of pulse spreading tests were carried out
using receiver fields of view as small as possible.*

Thelocation of this quasi-point receiver in the far-field pattern of the return beam is also
important since velocity aberration effects cause ground-based receivers to operate 25 to 50
Mr off the axis of the reflected beam pattern. In these tests, the quasi-point receiver was
located at four different positions in the far-field pattern in the 25 to 50 nr annulus, and
the results that are presented represent averages for the four positions.

Table 7 lists the pulse width measurements and compares them to the large field-of-view
(FOV) results presented earlier. (Results for array orientation of 0 degrees, 10 degrees, and

*The lower limit on receiver field of view being determined by the optical SNR at the input of the photodetector.
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Table 6
Array-Induced Pulse Spreading

Satellite Array
Orientation

degrees

0

10

20

30

40

45

50

60

65

Rise
Time (ps)

290

290

230

240

250

250

220

270

230

Fall
Time (ps)

—

460

650

790

890

900

910

800

800

65 degrees were not obtained due to insufficient optical SNR.) A reduction in pulse width,
amounting to as much as 140 ps, is apparent. Additional analysis indicated that this reduc-
tion in pulse width is due to a change in fall time of the received pulse, with the rise time
essentially unchanged from the large FOV case.

The mechanism responsible for this change in fall time can be explained by referring to
figure 17. For the large FOV case when essentially all the return signal is captured by the
photodetector, the relative magnitude of the reflected pulses is shown in line b, and the
detector output is shown in line d. In the small FOV case, the detector is receiving signal
through a "point" aperture located at a specific position in the far-field pattern of the re-
turn signal. This far-field pattern is, in fact, the summation of the far-field patterns from
the individual cube corners, each cube corner acting as an independent radiator with its own
antenna gain. The antenna gain (or equivalently, the beam divergence of the reflected signal)
of the individual Geos-3 cube corners depends on two factors: first, the dihedral angle off-
set intentionally built into the reflectors to accommodate the velocity aberration; and second,
the usual laws of diffraction theory. At the appropriate points in the far field (that is, 25
to 50 Mr off-axis), the antenna gain of a Geos-3 cube corner decreases as the angle of arrival
of the incident signal increases; this decrease is due primarily to diffraction. In effect then,
the antenna gain associated with the signal leaving reflector #1 (figure 17) is significantly
less than that associated with reflector #7. Therefore, a representation of the received pulse
train as seen by a "point" detector in the far field would differ from that of line b in that
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Table 7
Pulse Spreading for Point Receiver

Satellite Array
Orientation

0°

10°

20°

30°

40°

50°

60°

65°

Pulse Width (FWHM, ps)
Large FOV

580

630

720

760

780

720

700

660

Pulse Width (FWHM, ps)
Small FOV

—

—
580

660

640

660

700

—

the trailing pulses (1,2, ) would be deemphasized with respect to the leading pulses.
This, of course, is responsible for the reduction in fall time noted in the experiment measure-
ments.

Range Correction for Center of Mass Tracking

The ranging measurements obtained by ground-based laser systems while tracking in-orbit
satellites are, in fact, distance measurements between a well-defined point in the ground
station optical system and a rather vaguely defined point near the surface of the satellite
reflector array. In order to make full use of the precision available in such data, it is generally
desirable to relate the range measurement to the center of mass of the satellite, since it is
this point whose motion can be calculated through knowledge of the Earth's geopotential
field.* Figure 19 shows that the range correction for a gravity gradient stabilized satellite
(for example, Geos-3) is generally a function of the orientation of the vehicle with respect
to the incident beam (7); for the gravity gradient stabilized case 7 can be calculated from
knowledge of the ground station pointing angle 0 and orbital altitude h. Therefore, the
prelaunch measurement requirement reduces to evaluating the range correction as a function
of 7, the angle of incidence. The technique used to evaluate the range correction is shown
in figure 20. A flat reference array is mounted a known distance (R2) in front of the satel-
lite array, and therefore each incident pulse results in a pair of reflected pulses. By measur-
ing the temporal spacing (AT) between the two reflected pulses, and knowing the location
of the Geos array with respect to the satellite CCXRj), the range correction can be evaluated

*Or, inversely, the Earth's gravity field can be calculated from the corrected range measurements.
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ORBITAL PATH
RANGE CORRECTION

GEOS CENTER
OF MASS

LASER REFLECTOR
ARRAY

Figure 19. Concept of range correction for center of mass tracking.

EFFECTIVE REFLECTION PLANE
OF FLAT ARRAY

SATELLITE CENTER
OF GRAVITY (CO

Rl*
' (cm). '

DISTANCE FROM ARRAY MOUNTING
SURFACE TO SATELLITE CG

•MEASURED DURING SATELLITE
TESTS BY APPLI ED PHYSICS
LAB. (JOHNS HOPKINS UNIVERSITY)

RANGE CORRECTION = R, + R2 - 1.5 X 1010 AT (cm)

Figure 20. Measurement technique for range correction.

as shown in the figure. Data were taken for angles of incidence (7) from 0 to 65 degrees;
however, in each case, the reference array was maintained normal to the incident signal so
that its effective reflection plane was precisely defined. The results are summarized in table
8.

The second column lists the experimental values with the negative sign implying that the
effective reflection plane of the array is in front of the satellite center of gravity (CG). A

31



Table 8
Range Corrections for Geos-3

Incidence
Angle

(degrees)

0

10

20

30

40

45

50

60

Experimental*
X = .53 jum

-1316

-1.355

-1.367

-1.356

-1.291

-1 .273

-1.221

-1.084

Range Correction - Meters*
"Retro" Program

X = .6943 /im

-1.3050

-1.3960

-1.3770

-1.3653

-1.3167

-1.2769

-1.2236

-1.0833

algorithm**

-1.304

-1.350

-1.379

-1.366

-1.314

-1.272

-1.219

-1.085

*Centroid detection was used in the experimental measurements and the RETRO program calculations.

**Range correction = [1.411 - 0.36 (7/7+3)] cos (7 - 22.473) meters.

digital computer model of the array was also constructed and evaluated using the RETRO
program recently developed by Minott at GSFC. These results are listed in the third column

. tf^1

and are clearly in excellent agreement with the measurements. An algorithm that fits the
results with about 1-cm accuracy is also shown in the table; this may be useful in computer-
ized reduction of tracking data. Both the experimental and analytical results listed here ap-
ply to the 0.53-jum wavelength. However, operation at other wavelengths (such as 0.69 Mm)
is not expected to change the results by more than a few millimeters.

It should also be noted that the experimental results were obtained with the large field-of-
view (FOV) receiver system (so as to enhance the SNR). Operation with a point receiver
would change the received pulse shape slightly by reducing the fall time (as discussed in the
section, "Pulse Spreading"). The net effect of this would be to move the centroid of the
pulse forward a few millimeters; incorporation of this effect into the measurements would
decrease the small difference between the measured and analytical results even further.
Figure 21 plots the range correction as a function of incidence angle 7 and the ground station
zenith pointing angle 0.
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Figure 21. Geos-3 laser range correction.

If the satellite maintained a perfect local vertical orientation throughout its orbit (by use of
the gravity gradient stabilization system), then the incident angle 7 could be calculated pre-
cisely from knowledge of the ground station "look" angle 6, and each range measurement
could be "corrected" using the data of figure 21. However, there is a potentially significant
amount of error in attitude stabilization systems that causes the instantaneous attitude to
jitter about the nominal (that is, desired) value. Since the instantaneous attitude generally
is not known, this mechanism represents a residual error source. The magnitude of this .error
source is shown in figure 22, which is a numerical differentiation of figure 21. The Geos-3
attitude stabilization system is expected to achieve local vertical orientation to much better
than a degree, so this particular error source should be maintained at less than 1 cm through-
out the orbit.

Summary/Target Signature Tests

In summary form, the results of the Geos-3 target signature tests are as follows:

(1) The laser reflector array spreads incident pulses by increasing the rise time by
about 250 ps and the fall time by about 800 ps (see table 6).
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(2) The range correction has been evaluated experimentally and was found to agree
with computer models to within about 1 cm.

(3) Error introduced into the range correction by spacecraft attitude instabilities can
be kept below 1 cm assuming a spacecraft stability slightly better than ±1 degree.

10 20 30 40

. NOMINAL INCIDENCE ANGLE (7°)

0 11.5 23.1 34.9 47.4 61.4 82.8
ZENITH ANGLE (6°)

Figure 22. Range correction error due to spacecraft attitude instability.
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APPENDIX A

CUBE CORNER AND ARRAY SPECIFICATIONS

1.0 SCOPE

This specification establishes the requirements for cube corner reflectors (prisms) which will
constitute the optical portion of laser retrorefleeter panels that will be installed on the
Geos-3 spacecraft. Their specific function will be to reflect laser pulses originating on the
Earth back to an Earth stationed receiving telescope. The cube corners will be attached in
some manner to a fiberglas-nylon phenolic honeycomb substrate, which in turn will be
mounted to the Earth-facing side of the spacecraft.

2.0 APPLICABLE DOCUMENT

2.1 APL Drawing No. C-7234-1076, Cube Corner Geos-3 Spacecraft.

3.0 REQUIREMENTS

3.1 General

These cube corners will be used in a space application and therefore will be subjected to
vibration and loading conditions peculiar to a launch environment, significant temperature
extremes, and the vacuum associated with a near Earth orbit. The cube corners, although
exposed to direct Sunlight at times, for the most part, will be looking at the Earth once the
spacecraft becomes operational.

3.2 Physical Properties

3.2.1 Dimensions: Each cube corner will be manufactured in accordance with the provisions
stipulated in section 2.1 control drawing.

3.2.2 Material: Prisms shall be made of homogeneous, radiation resistant fused silica free
of strains or striations. The grade shall be equivalent to or better than Amersil Special or
Supercil I.

3.2.3 Coatings: Reflecting faces shall be coated with silver with a protective overcoat.
Reflectivity per reflection internal to the prism shall be 94% or better at 6943 A. The
refractive surface of the prism shall be coated with a hard anti-reflection coating peaked for
optimum efficiency at 6943 A. Net optical efficiency of the prism shall be greater than 75%.
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3.2.4 Surface Finish: Each surface shall have a specular finish with a flatness tolerance of
1/10 wavelength for the rms deviations of the surface from a true plane.

3.2.5 Dihedral Angles: All the dihedral angles shall be 90° 0' 2" ±0.50".

3.3 Workmanship

Each cube corner shall be manufactured, processed, and handled in accordance with currently
accepted practices for high quality aerospace components.

4.0 QUALITY ASSURANCE

4.1 Critique of Bulk Material

APL and NASA representatives, in conjunction with the contractor, will critique the bulk
material which will be designated for purchase by the contractor from his supplier prior to
the purchase.

4.2 Government Source Inspection

The Government reserves the right to perform source inspection at the manufacturer's facility
at any point during the fabrication and testing of the cube corners.

4.3 Acceptance Testing

A. Test Procedure

The Contractor shall prepare and submit to APL for approval, an Acceptance Test
Procedure. The Procedure shall be sufficiently detailed to demonstrate the contractor's
ability to ensure compliance with all requirements of this specification. Suggested
methods include the use of a Twyman Green interfereogram or a far field pattern pro-
duced by an autocollimater.

B. Acceptance Tests

Acceptance tests shall be conducted on each cube corner, in accordance with the
Acceptance Test Procedure. Testing shall not be started until APL written approval
of the Procedure has been obtained.

4.4 Data Requirements

The following data shall be supplied with each lot of cube corners shipped:

A. Acceptance test data for each cube corner, as required by the approved Acceptance
Test Procedure.



B. Certificates of Compliance for the lot, as follows:

1) Certificate, signed by a responsible representative of the contractor, indicating
compliance of the delivered cube comers, with all of the requirements of this
specification.

2) Certificate attesting to the optical quality of the fused silica from which the lot
of cube corners has been fabricated.

5.0 DELIVERY

The vendor shall take the necessary precautions to ship the finished cube corners in an accept-
able container lined with some type of shock absorbing cushion material.

35.00

54° 44' 8"
±0° 15' 0"
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NOTED:

1. Angles between faces to be 90° 0' 2" ± 0.50".
2. Tolerance on linear dimensions ± 0.25 mm.
3. Minimum protective bevel on all corners and edges.
4. Hard antiref lection coating.
5. Material: fused silica, equivalent in optical probe to Amersil special or Suprasil I.
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APPENDIX B
THE RADAR RANGE EQUATION

The classical radar range equation is as follows:

s _ (B-l)
(47T)3 R4

where S = received signal energy

ET = energy transmitted by the laser

GT = antenna gain of transmitter

GR = antenna gain of receiver

a = radar (Lidar) cross section of target

R = slant range of target

However, for a transmitted beam with a Gaussian profile it can be shown that

GT = 32/02 (B-2)
* 1 1

where 0T is the angular divergence of the beam to the 1/e2 intensity points. Also, the gain
of the receiver is

47TA AD

GR = —^ = (— ) (B-3)
X2 \ X

where A_ is the area of the receiver and DD is the diameter of the receiver, which is assumed
iv iv

to have a circular aperture with no obscuration. Obscuration and optical losses will be taken
care of by a system optical efficiency. Therefore equation (B-l), after substitution of equations
(B-2) and (B-3), becomes the following:

1 ETD2 a
(B-4)

But the received signal is usually wanted in photoelectrons, while the transmitted energy is
usually in joules. Therefore, a conversion must be made by the following relationship:

N = -^ (B-5)
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where T? is the photomultiplier quantum efficiency and hi> is the energy of a photon. But the
energy of a photon is

Q
lu> = (B-6)

A

where Q is 1.987 X lO"25 joule meters. Therefore,

N - *± (B-7)

Substituting into equation (B-4) yields

1 i?XE,

27rQ 6l R
N = - • - (B-8)

However, as yet losses have not been taken into account. To do this, two terms are added:
(1) TA, to account for the two-way atmospheric absorption, and (2) pQ, to account for all
losses in the transmitter/receiver system. Losses in the retroreflector are taken into account
in the calculation of a. Therefore, the final equation becomes

1 . T/XE D TAP a
N= - . - T R A ° (B-9a)

27TQ 02 R4

A variation that may be used if equation (B-5) rather than equation (B-7) is substituted into
equation (B-4) is

" ' '
27T (hv) 02 R4

Atmospheric absorption is usually accounted for with the following equation:

where 6 is the zenith angle and TA is the zenith atmospheric transmission. The quanity TO

is usually taken to be 0.70 at visible wavelengths, but can vary by a large amount due to
weather conditions.

The p term takes all optical efficiencies of the transmitter and receiver into account and in-
cludes a central obscuration factor if the receiver telescope is cassegrainian.
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GEOS-3 FAR-FIELD DIFFRACTION PATTERNS
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ĉ
0)
J3a
o
6

II ^
45
CO

6
tu

_
en
c
10

c.
<a

o
c

S

I
a
co
u

I
TO

£
CO

O

3
O)

1 1 1 1 1 1 1 1 r l 1 1 l i 1 1 i u r l 1 1 1 1 1 1 1 1 1 1
§ § § S 8 ° S ? 8 S S = g S 8 S S '

I I I I I I I I I I I I 9\ I I I I I II I I I I I I I I I I!

i s § s ° s § a s s ° s s s s s 0

SU313WI11IW

C-6



4

4

8 S S S S

1 1 1 1 1 1 1 1 r

S S 8 S S °

SU313wmiW

CO

O

C-7



1. Report No. 2. Government Accession No.
TP-1138

4. Title and Subtitle

Prelaunch Testing of the Geos-3 Laser Reflector Array

7. Author(s) p. Q. Minott, M. W. Fitzmaurice,
J. B. Abshire, and H. E. Rowe

9. Performing Organization Name and Address

Goddard Space Flight Center
Greenbelt, Maryland 20771

-12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date
January 1978

6. Performing Organization Code

723
8. Performing Organization Report No.

G7702-F19
10. Work Unit No.

506-20-33
11., Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This paper describes the prelaunch testing performed on the Geos-3 Laser Reflector Array
before launch to determine the lidar cross section of the array and the distance of the center
of gravity of the satellite from the center of gravity of reflected laser pulses as a function of
incidence angle. Experimental data are compared to computed results.

/

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Retroreflectors, Cube corners, Laser STAR Category 36
Ranging, Laser Reflectors Unclassified— Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 53 $5.25

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1978



National Aeronautics and
Space Administration

Washington, D.C.
20546

Official Business

Penalty for Private Use, $300

THIRD-CLASS BULK RATE Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

US. MAIL

NASA POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return




