136 research outputs found

    Little Evidence of Benthic Community Resilience to Bottom Trawling on Seamounts After 15 Years

    Get PDF
    The resilience and recovery dynamics of deep-sea habitats impacted by bottom trawling are poorly known. This paper reports on a fishing impact recovery comparison based on four towed camera surveys over a 15-year period (2001–2015) on a group of small seamounts on the Chatham Rise, east of New Zealand, on which pre-disturbance benthic communities are dominated by thicket-forming scleractinian corals. The six seamounts studied encompass a range of trawl histories, including one with high and persistent levels of trawling throughout the survey period, two with intermittent and intermediate levels of trawling, two which were low/untrawled, and one, ‘Morgue’, which was closed to trawling in 2001, having been heavily trawled up to that point. Still photographs from all surveys were analyzed for the identification and abundance of all visible benthic fauna with effort made to ensure consistency of data among surveys. Because increases in image resolution and quality over time resulted in a persistent trend of increasing abundances, analyses were concentrated on comparisons among seamounts within surveys and how these relationships changed with time. The abundance, species richness, and diversity of benthic communities were higher on low/untrawled seamounts than on those that had been trawled. Multivariate community structure showed similar patterns at each survey point, the low/untrawled seamounts being strongly dissimilar to the persistently trawled seamount, with the others ranged between these extremes, broadly in accordance with their cumulative trawl histories. Community structure on the persistently trawled seamount was less variable than on the other seamounts throughout the study period, possibly because of regular ‘re-setting’ of the community by disturbance from trawling. Although there was some variability in results between whole seamount and summit sector analyses, in general communities on Morgue remained similar to those on the persistently trawled seamount, showing little indication of steps toward recovery to its pre-disturbance state following its closure. These results indicate low resilience of benthic communities on the seamounts to the effects of bottom trawling

    Spatial variation in the composition of motile macroinvertebrate assemblages associated with two bed types of the seagrass Posidonia oceanica

    Get PDF
    The influence of continuous (non-fragmented) and reticulate (fragmented) bed type and plant architecture on the species richness, abundance and assemblage composition of motile macroinvertebrates associated with the seagrass Posidonia oceanica was investigated at 3 different spatial scales (10s of metres [‘small’], 100s of metres [‘medium’] and kilometres [‘large’]). Univariate and multivariate analyses did not identify significant differences in the attributes of macroinverte- brate assemblages between the 2 P. oceanica bed types over the 3 spatial scales considered. On the other hand, significant spatial variation in macroinvertebrate attributes was detected at the large spa- tial scale. Results of univariate regression and multivariate correlation analysis consistently indicated significant relationships between attributes of the macroinvertebrate assemblages and epiphyte bio- mass at the large spatial scale. Although less consistent, significant relationships were also detected between attributes of the macroinvertebrate assemblages, and mean sediment grain size, total organic carbon in sediment and shoot biomass at the large and medium spatial scales. The findings indicate that naturally fragmented and non-fragmented P. oceanica beds have similar habitat charac- teristics for the associated macroinvertebrates and that local factors, which influence seagrass bed architecture and particularly epiphyte load, have greater influence on the seagrass fauna. Data from the present study support the notion that fragmented seagrass beds should receive the same attention as non-fragmented ones with regard to habitat conservation and protection.peer-reviewe

    Occurrence and distribution of different bed types of seagrass Posidonia oceanica around the Maltese Islands

    Get PDF
    The small-scale distribution of Posidonia oceanica bed types were mapped at four locations off the northern coast of the Maltese Islands, using aerial photography supplemented by surveys using SCUBA diving. Results showed a similar pattern of occurrence of the seagrass at all locations surveyed. In shallow waters (2 m – 4 m), P. oceanicaoccurred as patches of variable size on a rocky and/or sandy substratum. In deeper waters (5 m – 10 m), the patches of seagrass were often replaced by reticulate beds consisting of P. oceanicainterspersed with areas of bare sand. Deeper still (11 m – 13 m), a transition from reticulate to continuous beds occurred. Continuous beds extended to depths of around 25 - 30 m and eventually became reticulate or patchy in deeper waters (>25 m). Values of total seagrass percentage cover increased, while the ratio of fragmented:continuous bed cover decreased for the four study locations on moving southwards (Ramla Bay to St Thomas Bay), indicating that P. oceanica habitat was more abundant and less fragmented in the south-eastern parts of the Maltese Islands. However, values calculated using an exposure index did not did indicate a relationship between exposure and the observed decease in fragmentation of seagrass beds on moving northwest to southwest along the north-eastern coast. Data from the four sites surveyed, together with data from other surveys, were used to show the large-scale distribution of P. oceanica beds around the Maltese Islands. The implications of the study findings for the conservation and management of P. oceanica habitat around the Maltese Islands are discussed.peer-reviewe

    Marine fish may be biochemically constrained from inhabiting the deepest ocean depths

    Get PDF
    No fish have been found in the deepest 25% of the ocean (8,400-11,000 m). This apparent absence has been attributed to hydrostatic pressure, although direct evidence is wanting because of the lack of deepest-living species to study. The common osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins against pressure and increases with depth, going from 40 to 261 mmol/kg in teleost fishes from 0 to 4,850 m. TMAO accumulation with depth results in increasing internal osmolality (typically 350 mOsmol/kg in shallow species compared with seawater\u27s 1,100 mOsmol/kg). Preliminary extrapolation of osmolalities of predicted isosmotic state at 8,000-8,500 m may indicate a possible physiological limit, as greater depths would require reversal of osmotic gradients and, thus, osmoregulatory systems. We tested this prediction by capturing five of the second-deepest known fish, the hadal snailfish (Notoliparis kermadecensis; Liparidae), from 7,000 m in the Kermadec Trench. We found theirmuscles to have a TMAOcontent of 386 ± 18 mmol/kg and osmolality of 991 ± 22 mOsmol/kg. These data fit previous extrapolations and, combined with new osmolalities from bathyal and abyssal fishes, predict isosmotic state at 8,200 m. This is previously unidentified evidence that biochemistry could constrain the depth of a large, complex taxonomic group

    Limitations in the Use of Archived Vent Mussel Samples to Assess Genetic Connectivity Among Seafloor Massive Sulfide Deposits: A Case Study with Implications for Environmental Management

    Get PDF
    Genetic connectivity studies can inform the design of mitigation strategies used in environmental management. However, the expense of developing species-specific molecular markers and collecting samples at appropriate spatial and temporal scales can be prohibitive. Using archived material and existing molecular markers may provide a cost-effective way to assess population connectivity. Genetic connectivity studies are increasingly in demand in the deep sea in response to mounting anthropogenic pressures, including seafloor massive sulfide (SMS) mining. The feasibility of using archived material was assessed using the New Zealand-endemic vent mussel Gigantidas gladius, which inhabits areas licensed for the prospecting phase of SMS mining. Four molecular markers were tested, but only one (mitochondrial COI) provided suitable sequences. Of 942 specimens, only 150 individuals were informative, largely due to poor tissue quality of archived samples. Seven populations spanning the distributional range of G. gladius were assessed. The results indicate that G. gladius has high levels of gene flow among sites 10s to 100s km apart and limited genetic structure. Haplotypic diversity was not equally distributed among populations, with lower diversity for the Macauley Volcano population at the northern extent of the species distribution and greater diversity within central populations. Migrant exchange was also greatest between central populations, with one population at Rumble V Seamount appearing important in terms of maintaining genetic diversity within the Kermadec Volcanic Arc region. However, interpretation of the results should be viewed with caution as small sample sizes may have limited the ability to detect genetic structure. Despite these limitations, mitigation strategies that protect areas of seabed from mining activities should consider the genetic vulnerability of the population at the northern edge of the species’ distribution and the significance of certain central populations

    Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean:Implications for the use of broad-scale models in fisheries management

    Get PDF
    AbstractManagement of human activities which impact the seafloor in the deep ocean is becoming increasingly important as bottom trawling and exploration for minerals, oil, and gas continue to extend into regions where fragile ecosystems containing habitat-forming deep-sea corals and sponges may be found. Spatial management of these vulnerable marine ecosystems requires accurate knowledge of their distribution. Predictive habitat suitability modelling, using species presence data and a suite of environmental predictor variables, has emerged as a useful tool for inferring distributions outside of known areas. However, validation of model predictions is typically performed with non-independent data. In this study, we describe the results of habitat suitability models constructed for four deep-sea reef-forming coral species across a large region of the South Pacific Ocean using MaxEnt and Boosted Regression Tree modelling approaches. In order to validate model predictions we conducted a photographic survey on a set of seamounts in an un-sampled area east of New Zealand. The likelihood of habitat suitable for reef-forming corals on these seamounts was predicted to be variable, but very high in some regions, particularly where levels of aragonite saturation, dissolved oxygen, and particulate organic carbon were optimal. However, the observed frequency of coral occurrence in analyses of survey photographic data was much lower than expected, and patterns of observed versus predicted coral distribution were not highly correlated. The poor performance of these broad-scale models is attributed to lack of recorded species absences to inform the models, low precision of global bathymetry models, and lack of data on the geomorphology and substrate of the seamounts at scales appropriate to the modelled taxa. This demonstrates the need to use caution when interpreting and applying broad-scale, presence-only model results for fisheries management and conservation planning in data poor areas of the deep sea. Future improvements in the predictive performance of broad-scale models will rely on the continued advancement in modelling of environmental predictor variables, refinements in modelling approaches to deal with missing or biased inputs, and incorporation of true absence data

    Sediment accumulation and carbon burial in four hadal trench systems

    Get PDF
    Hadal trenches are considered to act as depocenters for organic material, although pathways for the material transport and deposition rates are poorly constrained. Here we assess focusing, deposition and accumulation of material and organic carbon in four hadal trench systems underlying different surface ocean productivities; the eutrophic Atacama and Kuril-Kamchatka trenches, the mesotrophic Kermadec trench and the oligotrophic Mariana Trench. The study is based on the distributions of naturally occurring 210Pbex, 137Cs and total organic carbon from recovered sediment cores and by applying previously quantified benthic mineralization rates. Periods of steady deposition and discreet mass-wasting deposits were identified from the profiles and the latter were associated with historic recorded seismic events in the respective regions. During periods without mass wasting, the estimated focusing factors along trench axes were elevated, suggesting more or less continuous downslope focusing of material toward the interior of the trenches. The estimated organic carbon deposition rates during these periods exhibited extensive site-specific variability, but were generally similar to values encountered at much shallower settings such as continental slopes and margins. Organic carbon deposition rates during periods of steady deposition were not mirrored by surface ocean productivity, but appeared confounded by local bathymetry. The inclusion of deposition mediated by mass-wasting events enhanced the sediment and organic carbon accumulations for the past ∼ 150 years by up to a factor of ∼ 4. Thus, due to intensified downslope material focusing and infrequent mass-wasting events, hadal trenches are important sites for deposition and sequestration of organic carbon in the deep sea

    Microbes, macrofauna, and methane: a novel seep community fueled by aerobic methanotrophy

    Get PDF
    During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 ± 7800 macrofaunal individuals m−2 and a maximum wet biomass of 274 g m−2, both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29–90 mmol C m−2 d−1 of methane-fueled biomass; this is > 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emission

    Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: Possible effects of differences in organic matter supply

    Get PDF
    Hadal trenches are characterised by environmental conditions not found in any other environment, thereby providing new opportunities to understand the processes that shape deep-sea benthic cornmunities. Technological advances have led to an increase in the number of investigations in hadal trenches over the last two decades. However, more quantitative samples including the deepest parts of trenches is needed to better understand trends in benthic diversity, abundance, biomass and community structure in these extreme habitats, and how these may be shaped by environmental and/or evolutionary factors. In this study, we describe and compare the abundance, biomass, vertical distribution in the sediment, diversity, and community structure of nematodes and other infauna in sediments from the Horizon Deep (similar to 10 800 m) in the Tonga Trench and a site on the edge of the trench (similar to 6250 m). Mean nematode abundance was six times greater at the Horizon Deep site (387 ind. 10 cm(-2)) than at the trench edge site (65 ind. 10 cm(-2)). A similar pattern was observed for biomass (15 vs 2 mu gDW 10 cm(-2), respectively), which likely resulted from elevated organic matter supply at the Horizon Deep site. There was no significant difference in nematode species richness between the two sites, but diversity measured using rarefaction was significantly greater at the trench edge site than at the Horizon Deep site [ES(20); 13.8 vs 7.8]. Dominance was much more pronounced in the Horizon Deep, which may be due to competitive exclusion by a small number of opportunistic species. Nematode community structure differed significantly both between sites and among sediment depth layers. The presence of subsurface peaks in pigment concentrations, bacteria abundance, and nematode abundance at the Horizon Deep site is consistent with a recent turbidite event, and may also reflect high rates of bioturbation by larger fauna resulting from high food availability. Determining the relative influences of different environmental factors on hadal trench benthic communities will require further investigation based on quantitative samples encompassing the trench axis as well as the oceanic and continental slopes. (C) 2015 Elsevier Ltd. All rights reserved
    • …
    corecore