819 research outputs found
Geology
Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods
Action of earthworms on flint burial â a return to Darwinâs estate
For thirty years, from the early 1840s, Charles Darwin documented the disappearance of flints in the grounds of Down House in Kent, at a location originally known as the âStony Fieldâ. This site (Great Pucklands Meadow - GPM) was visited in 2007 and an experiment set up in this ungrazed grassland. Locally-sourced flints (either large - 12 cm, or small â 5 cm dia.) were deposited at two densities within sixteen 1 m2 plots in a randomised factorial design. The area selected was distant from public access routes and remained unmown throughout the duration here reported. Fixed point photographs were taken at the outset to enable later photogrammetric analysis. After 6 years, the site was re-examined. The flints had generally been incorporated into the soil. Photographs were re-taken, proportion of buried flints recorded and measurements made of burial depth from a quarter of each plot. Results showed that large flints were more deeply incorporated than smaller (p=0.025), but more of the latter were below the soil surface. A controlled laboratory experiment was also conducted using Aporrectodea longa (the dominant earthworm species in GPM) to assess effects of casting in the absence of other biota. Results suggested that this species has a major influence on flint burial through surface casting. Combined with a long term, but small scale collection of A. longa casts from an area close to GPM, all results were consistent with those provided by Darwin and showed that rate of flint burial was within the range 0.21-0.96 cm y-1
A 4% Geometric Distance to the Galaxy NGC4258 from Orbital Motions in a Nuclear Gas Disk
The water maser in the mildly active nucleus in the nearby galaxy NGC4258
traces a thin, nearly edge-on, subparsec-scale Keplerian disk. Using the
technique of very long baseline interferometry, we have detected the proper
motions of these masers as they sweep in front of the central black hole at an
orbital velocity of about 1100 km/s. The average maser proper motion of 31.5
microarcseconds per year is used in conjunction with the observed acceleration
of the masers to derive a purely geometric distance to the galaxy of 7.2 +- 0.3
Mpc. This is the most precise extragalactic distance measured to date, and,
being independent of all other distance indicators, is likely to play an
important role in calibrating the extragalactic distance scale.Comment: 11 pages, 3 figures. Accepted for publication in Natur
On Semiclassical Limits of String States
We explore the relation between classical and quantum states in both open and
closed (super)strings discussing the relevance of coherent states as a
semiclassical approximation. For the closed string sector a gauge-fixing of the
residual world-sheet rigid translation symmetry of the light-cone gauge is
needed for the construction to be possible. The circular target-space loop
example is worked out explicitly.Comment: 12 page
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26â°C) and sub-bleaching (31â°C) temperatures under elevated nitrate. Warming to 31â°C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Galaxy Collisions - Dawn of a New Era
The study of colliding galaxies has progressed rapidly in the last few years,
driven by observations with powerful new ground and space-based instruments.
These instruments have used for detailed studies of specific nearby systems,
statistical studies of large samples of relatively nearby systems, and
increasingly large samples of high redshift systems. Following a brief summary
of the historical context, this review attempts to integrate these studies to
address the following key issues. What role do collisions play in galaxy
evolution, and how can recently discovered processes like downsizing resolve
some apparently contradictory results of high redshift studies? What is the
role of environment in galaxy collisions? How is star formation and nuclear
activity orchestrated by the large scale dynamics, before and during merger?
Are novel modes of star formation involved? What are we to make of the
association of ultraluminous X-ray sources with colliding galaxies? To what do
degree do mergers and feedback trigger long-term secular effects? How far can
we push the archaeology of individual systems to determine the nature of
precursor systems and the precise effect of the interaction? Tentative answers
to many of these questions have been suggested, and the prospects for answering
most of them in the next few decades are good.Comment: 44 pages, 9 figures, review article in press for Astrophysics Update
Vol.
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Non-local heat transport in Alcator C-Mod ohmic L-mode plasmas
Non-local heat transport experiments were performed in Alcator C-Mod ohmic L-mode plasmas by inducing edge cooling with laser blow-off impurity (CaF2) injection. The non-local effect, a cooling of the edge electron temperature with a rapid rise of the central electron temperature, which contradicts the assumption of 'local' transport, was observed in low collisionality linear ohmic confinement (LOC) regime plasmas. Transport analysis shows this phenomenon can be explained either by a fast drop of the core diffusivity, or the sudden appearance of a heat pinch. In high collisionality saturated ohmic confinement (SOC) regime plasmas, the thermal transport becomes 'local': the central electron temperature drops on the energy confinement time scale in response to the edge cooling. Measurements from a high resolution imaging x-ray spectrometer show that the ion temperature has a similar behaviour as the electron temperature in response to edge cooling, and that the transition density of non-locality correlates with the rotation reversal critical density. This connection may indicate the possible connection between thermal and momentum transport, which is also linked to a transition in turbulence dominance between trapped electron modes (TEMs) and ion temperature gradient (ITG) modes. Experiments with repetitive cold pulses in one discharge were also performed to allow Fourier analysis and to provide details of cold front propagation. These modulation experiments showed in LOC plasmas that the electron thermal transport is not purely diffusive, while in SOC the electron thermal transport is more diffusive like. Linear gyrokinetic simulations suggest the turbulence outside r/a = 0.75 changes from TEM dominance in LOC plasmas to ITG mode dominance in SOC plasmas.United States. Dept. of Energy (DoE Contract No DE-FC02-99ER54512)Oak Ridge Institute for Science and Education (DOE Fusion Energy Postdoctoral Research Program
Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis
The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.info:eu-repo/semantics/publishedVersio
Models for Multiband IR Surveys
Empirical 'backward' galaxy evolution models for IR-bright galaxies are
constrained using multiband IR surveys. A new Monte-Carlo algorithm is
developed for this task. It exploits a large library of realistic Spectral
Energy Distributions (SEDs) of 837 local IR galaxies (IRAS 25 selected)
from the UV (1000{\AA}) to the radio (20cm), including ISO-measured 3--13 unidentified broad features (UIBs). The basic assumption is that the local
correlation between SEDs and Mid-Infrared (MIR) luminosities can be applied to
earlier epochs of the Universe. Three populations of IR sources are considered
in the evolution models. These include (1) starburst galaxies, (2) normal
late-type galaxies, and (3) galaxies with AGN. A set of models so constructed
are compared with data from the literature. Predictions for number counts,
confusion limits, redshift distributions, and color-color diagrams are made for
multiband surveys using the upcoming SIRTF satellite.Comment: 40 pages latex. 32 GIF figures. New Version (July 8, 2001) to be
accepted by ApJ. High quality figures (included in a PS file of the paper)
can be found in
http://spider.ipac.caltech.edu/staff/cxu/papers/paper_model_3.ps.g
- âŠ