265 research outputs found

    On the use of a liquid lens for improving iris images quality in a hyperspectral system

    Get PDF
    In this paper, we describe how using a liquid lens can improve the quality of iris images acquired by a hyperspectral system. This improvement in the image quality is especially noticeable for systems that scan the iris over a wide range of wavelengths, e.g. visible and near-infrared spectrum. We have tested this approach on the previously developed system able to acquire iris images in the spectral range 480 - 900 nm. The key novelty presented in this paper is represented by the possibility of adaptively adjusting the focus of the imaging system, allowing for chromatic aberration compensation and ensuring a constant image sharpness among all wavelengths. A fast-tunable liquid lens has been placed in front of the chromatically corrected camera objective to adaptively change the overall focus of the imaging system. The findings imply that the device can rapidly perform hyperspectral measurements of the iris over a broad wavelength range ensuring optimal focus for all images

    Vision-Based Eye Image Classification for Ophthalmic Measurement Systems

    Get PDF
    : The accuracy and the overall performances of ophthalmic instrumentation, where specific analysis of eye images is involved, can be negatively influenced by invalid or incorrect frames acquired during everyday measurements of unaware or non-collaborative human patients and non-technical operators. Therefore, in this paper, we investigate and compare the adoption of several vision-based classification algorithms belonging to different fields, i.e., Machine Learning, Deep Learning, and Expert Systems, in order to improve the performance of an ophthalmic instrument designed for the Pupillary Light Reflex measurement. To test the implemented solutions, we collected and publicly released PopEYE as one of the first datasets consisting of 15 k eye images belonging to 22 different subjects acquired through the aforementioned specialized ophthalmic device. Finally, we discuss the experimental results in terms of classification accuracy of the eye status, as well as computational load analysis, since the proposed solution is designed to be implemented in embedded boards, which have limited hardware resources in computational power and memory size

    New optical scheme for a polarimetric-based glucose sensor

    Get PDF
    A new optical scheme to detect glucose concentration in the aqueous humor of the eye is presented. The ultimate aim is to apply this technique in designing a new instrument for, routinely and frequently, noninvasively monitoring blood glucose levels in diabetic patients without contact (no index matching) between the eye and the instrument. The optical scheme exploits the Brewster reflection of circularly polarized light off of the lens of the eye. Theoretically, this reflected linearly polarized light on its way to the detector is expected to rotate its state of polarization, owing to the presence of glucose molecules in the aqueous humor of a patient's eye. An experimental laboratory setup based on this scheme was designed and tested by measuring a range of known concentrations of glucose solutions dissolved in water. (C) 2004 Society of Photo-Optical Instrumentation Engineers

    Optoelectronic Apparatus Measures Glucose Noninvasively

    Get PDF
    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus

    Construction and evaluation of a disposable pH sensor based on a large core plastic optical fiber

    Get PDF
    The fabrication and characterization of a disposable optical fiber sensor for the detection of pH in the range 5-8 are described. The sensing element is a drop of sol-gel hybrid material containing phenol red and deposited onto the tip of a large core plastic optical fiber. This fiber is also exploited for the optical interrogation. This probe can be used as a disposable part of a measuring system. The dynamic range and temporal response of the sensor are here investigated

    Continuous haematic pH monitoring in extracorporeal circulation using a disposable florescence sensing element.

    Get PDF
    During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques

    In vivo diffuse correlation spectroscopy investigation of the ocular fundus

    Get PDF
    Diffuse correlation spectroscopy (DCS) measurements in vivo recorded from rabbits' ocular fundus are presented. Despite the complexity of these ocular tissues, we provide a clear and simple demonstration of the DCS abilities to analyze variations in physiological quantities of clinical interest. Indeed, the reported experimental activities demonstrate that DCS can reveal both choroidal-flow and temperature variations and detect nano- and microaggregates in ocular fundus circulation. Such abilities can be of great interest both in fundamental research and practical clinical applications. The proposed measuring system can be useful in: (a) monitoring choroidal blood flow variations, (b) determining the end-point for photo-dynamic therapy and transpupillary thermo therapy and, (c) managing the dye injection and determining an end-point for dye-enhanced photothrombosis. Moreover, it could allow both diagnoses when the presence of nano- and micro-aggregates is related to specific diseases and verifying the effects of nanoparticle injection in nanomedicine. Even though the reported results demonstrate the applicability of DCS to investigate ocular fundus, a detailed and accurate investigation of the limits of detection is beyond the scope of this article. \uc2\ua9 2013 Society of Photo-Optical Instrumentation Engineers

    Optical and electrical recording of neural activity evoked by graded contrast visual stimulus

    Get PDF
    BackgroundBrain activity has been investigated by several methods with different principles, notably optical ones. Each method may offer information on distinct physiological or pathological aspects of brain function. The ideal instrument to measure brain activity should include complementary techniques and integrate the resultant information. As a "low cost" approach towards this objective, we combined the well-grounded electroencephalography technique with the newer near infrared spectroscopy methods to investigate human visual function.MethodsThe article describes an embedded instrumentation combining a continuous-wave near-infrared spectroscopy system and an electroencephalography system to simultaneously monitor functional hemodynamics and electrical activity. Near infrared spectroscopy (NIRS) signal depends on the light absorption spectra of haemoglobin and measures the blood volume and blood oxygenation regulation supporting the neural activity. The NIRS and visual evoked potential (VEP) are concurrently acquired during steady state visual stimulation, at 8 Hz, with a b/w "windmill" pattern, in nine human subjects. The pattern contrast is varied (1%, 10%, 100%) according to a stimulation protocol.ResultsIn this study, we present the measuring system; the results consist in concurrent recordings of hemodynamic changes and evoked potential responses emerging from different contrast levels of a patterned stimulus.The concentration of [HbO2] increases and [HHb] decreases after the onset of the stimulus. Their variation shows a clear relationship with the contrast value: large contrast produce huge difference in concentration, while low contrast provokes small concentration difference. This behaviour is similar to the already known relationship between VEP response amplitude and contrast.ConclusionThe simultaneous recording and analysis of NIRS and VEP signals in humans during visual stimulation with a b/w pattern at variable contrast, demonstrates a strong linear correlation between hemodynamic changes and evoked potential amplitude. Furthermore both responses present a logarithmic profile with stimulus contrast

    Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix

    Get PDF
    Current trends in optical sensors, such as miniaturization, flexibility and enhanced sensitivity, are indicating a new chemical route for the development of advanced multifunctional materials for optical applications. Those chemical technologies, which can be more easily customized and allows the inclusion of multiple functionalities within a unique preparation step, are bound to be progressively more and more applied to the preparation of optical materials.In this perspective, the sol-gel technology certainly represents one of the most promising chemical strategies, thanks to numerous advantages mainly related to simplicity and mild operative conditions. It enables creating a glass-like porous structure at room temperature by a two-step acid or base catalyzed reaction involving hydrolysis and condensation, starting with metal alkoxides M(OR)4, which transforms into a rigid three-dimensional metal-oxide network (Brinker, 1990). The sol\u2013gel process has been proved to be flexible enough for an efficient incorporation of organic polymer chains that can behave as flexible links between the metal-oxide domains in the inorganic network, in particular when they are bearing reactive groups that can be involved in the hydrolysis\u2013condensation reactions. The resulting materials are known as organic\u2013inorganic hybrids (Schmidt, 2000), also commonly designated as ceramers due to the combination of the properties of ceramics (high modulus, thermal stability and low coefficient of thermal expansion) with those of organic polymers (high ductility, molecular flexibility and low temperature processing). These materials are often also known as phase-interconnected nanocomposites because of the high level of interconnection between the two phases with domain phase sizes approaching the nanometer scale. Ceramers have a huge potential for application in a variety of advanced technologies (Eckert, 2001; Sanchez, 2011; Kickelkick, 2006), both as structural materials and functional materials, such as catalyst supports, protective coatings (Messori, 2003, 2004a); Toselli, 2007; Fabbri, 2008), sensors (Rovati, 2011; Fabbri, 2011), and active glasses.Optical fiber sensors are traditionally obtain by fully-inorganic sol-gel process that allows the creation of Si-O-Si linkages between the silica core of the optical fiber and the silica porous matrix deriving from the jellification of the sensitive dye-doped colloidal suspension (Cao, 2005). However, this approach cannot be easily applied in the case of plastic optical fibers, due to the ineffective interaction between the organic PMMA optical fiber core (Lin, 2000).The approach proposed in this work consists in the fabrication of a pH sensor based on an organic-inorganic hybrid matrix obtained by a sol-gel process, doped with a pH sensitive indicator, to be applied at the tip of plastic optical fibers. Inside the sensitive element, the organic part of the hybrid glass, polyethylene oxide (PEO), plays a multiple role: (i) it allows good adhesion between the plastic optical fiber and the whole sensitive element; (ii) its weak hydrophilicity permits to tune the kinetic of response of the sensor by influencing thediffusion rate of the analyte inside the porous matrix and its interaction with the indicator; (iii) its nature of organic compound allows better physical and chemical interactions with the organic pH indicator dispersed in the hybrid matrix, thus reducing problems of leaching and enhancing the response rate of the sensor

    Disposable Fluorescence Optical pH Sensor for Near Neutral Solutions

    Get PDF
    The design, development and performance evaluation of a fluorescence-based pH sensor for on-line measurements is presented. The pKa of the sensing element has been calculated to be 7.9, thus the sensor is suitable for measurement of near neutral solutions. The sensor consists of a low-cost disposable polymer sensing probe, in contact with the solution under test, interrogated by an optoelectronic transduction system. The pH sensitive dye is based on fluorescein O-methacrylate, which has been covalently linked to a hydrogel matrix, realized through the use of HEMA (2-hydroxyethyl methacrylate), HDDA (1,6-hexanediol diacrylate) and PEGDA (polyethylene glycol diacrylate). The optical interrogation setup, together with the electronics, has been developed to acquire and process the fluorescence signal. The sensor works over a pH range between 6.5 and 9.0. In the range between 7.0 and 8.0, the sensor shows a linear behavior with a maximum linearity error of 5%. Thanks to the good performance of the sensing element and transduction system, the short term drift of the reading (measured over 40 min) is lower than 0.15%. The measuring system also exhibits good performance in terms of response time and reproducibility
    corecore