10 research outputs found

    Mode structure in superconducting metamaterial transmission-line resonators

    Get PDF
    FUNDAÇÃO DE AMPARO À PESQUISA E INOVAÇÃO DO ESTADO DE SANTA CATARINACNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSuperconducting metamaterials are a promising resource for quantum-information science. In the context of circuit QED, they provide a means to engineer on-chip dispersion relations and a band structure that could ultimately be utilized for generating complex entangled states of quantum circuitry, for quantum-reservoir engineering, and as an element for quantum-simulation architectures. Here we report on the development and measurement at millikelvin temperatures of a particular type of circuit metamaterial resonator composed of planar superconducting lumped-element reactances in the form of a discrete left-handed transmission line that is compatible with circuit QED architectures. We discuss the details of the design, fabrication, and circuit properties of this system. As well, we provide an extensive characterization of the dense mode spectrum in these metamaterial resonators, which we conduct using both microwave-transmission measurements and laser-scanning microscopy. Results are observed to be in good quantitative agreement with numerical simulations and also an analytical model based upon current-voltage relationships for a discrete transmission line. In particular, we demonstrate that the metamaterial mode frequencies, spatial profiles of current and charge densities, and damping due to external loading can be readily modeled and understood, making this system a promising tool for future use in quantum-circuit applications and for studies of complex quantum systems.115120FUNDAÇÃO DE AMPARO À PESQUISA E INOVAÇÃO DO ESTADO DE SANTA CATARINACNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFUNDAÇÃO DE AMPARO À PESQUISA E INOVAÇÃO DO ESTADO DE SANTA CATARINACNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSem informaçãoSem informaçãoAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    Get PDF
    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities

    Infrared spectroscopy investigation of various plasma-deposited polymer films irradiated with 170 keV He+ ions

    No full text
    This work illustrates the advantages of using p-polarized radiation at an incidence angle of 70 degrees in contrast to the conventional unpolarized beam at normal (or near-normal) incidence for the infrared spectroscopic study of polycarbosilane, polysilazane and polysiloxane thin films synthesized by plasma enhanced chemical vapor deposition (PECVD) and subsequently irradiated with 170 keV He+ ions at fluences from 1 x 10(14) to 1 x 10(16) cm(-2). Several bands not seen using the conventional mode could be observed in the polarized mode. (c) 2006 Elsevier B.V. All rights reserved

    Developments in hot-filament metal oxide deposition (HFMOD)

    No full text
    Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MOx WOx and VOx. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 degrees C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min(-1) for MoOx, are obtained. The film stoichiometry depends on the exact deposition conditions. MoOx films, for example, present a mixture of MoO2 and MoO3 phases, as revealed by XPS. As determined by Li+ intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm(2) C-1 at a wavelength of 700 nm. MOx and WOx films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VOx films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented. (c) 2007 Elsevier B.V. All rights reserved

    Global characteristics and outcomes of SARS-CoV-2 infection in children and adolescents with cancer (GRCCC): a cohort study

    No full text
    Background: Previous studies have shown that children and adolescents with COVID-19 generally have mild disease. Children and adolescents with cancer, however, can have severe disease when infected with respiratory viruses. In this study, we aimed to understand the clinical course and outcomes of SARS-CoV-2 infection in children and adolescents with cancer. Methods: We did a cohort study with data from 131 institutions in 45 countries. We created the Global Registry of COVID-19 in Childhood Cancer to capture de-identified data pertaining to laboratory-confirmed SARS-CoV-2 infections in children and adolescents (<19 years) with cancer or having received a haematopoietic stem-cell transplantation. There were no centre-specific exclusion criteria. The registry was disseminated through professional networks through email and conferences and health-care providers were invited to submit all qualifying cases. Data for demographics, oncological diagnosis, clinical course, and cancer therapy details were collected. Primary outcomes were disease severity and modification to cancer-directed therapy. The registry remains open to data collection. Findings: Of 1520 submitted episodes, 1500 patients were included in the study between April 15, 2020, and Feb 1, 2021. 1319 patients had complete 30-day follow-up. 259 (19·9%) of 1301 patients had a severe or critical infection, and 50 (3·8%) of 1319 died with the cause attributed to COVID-19 infection. Modifications to cancer-directed therapy occurred in 609 (55·8%) of 1092 patients receiving active oncological treatment. Multivariable analysis revealed several factors associated with severe or critical illness, including World Bank low-income or lower-middle-income (odds ratio [OR] 5·8 [95% CI 3·8–8·8]; p<0·0001) and upper-middle-income (1·6 [1·2–2·2]; p=0·0024) country status; age 15–18 years (1·6 [1·1–2·2]; p=0·013); absolute lymphocyte count of 300 or less cells per mm3 (2·5 [1·8–3·4]; p<0·0001), absolute neutrophil count of 500 or less cells per mm3 (1·8 [1·3–2·4]; p=0·0001), and intensive treatment (1·8 [1·3–2·3]; p=0·0005). Factors associated with treatment modification included upper-middle-income country status (OR 0·5 [95% CI 0·3–0·7]; p=0·0004), primary diagnosis of other haematological malignancies (0·5 [0·3–0·8]; p=0·0088), the presence of one of more COVID-19 symptoms at the time of presentation (1·8 [1·3–2·4]; p=0·0002), and the presence of one or more comorbidities (1·6 [1·1–2·3]; p=0·020). Interpretation: In this global cohort of children and adolescents with cancer and COVID-19, severe and critical illness occurred in one fifth of patients and deaths occurred in a higher proportion than is reported in the literature in the general paediatric population. Additionally, we found that variables associated with treatment modification were not the same as those associated with greater disease severity. These data could inform clinical practice guidelines and raise awareness globally that children and adolescents with cancer are at high-risk of developing severe COVID-19 illness. Funding: American Lebanese Syrian Associated Charities and the National Cancer Institute

    An updated review on synthetic cathinones

    No full text
    corecore