64 research outputs found

    Multicontact Motion Retargeting Using Whole-Body Optimization of Full Kinematics and Sequential Force Equilibrium

    Get PDF
    This article presents a multicontact motion adaptation framework that enables teleoperation of high degree-of-freedom robots, such as quadrupeds and humanoids, for loco-manipulation tasks in multicontact settings. Our proposed algorithms optimize whole-body configurations and formulate the retargeting of multicontact motions as sequential quadratic programming, which is robust and stable near the edges of feasibility constraints. Our framework allows real-time operation of the robot and reduces cognitive load for the operator because infeasible commands are automatically adapted into physically stable and viable motions on the robot. The results in simulations with full dynamics demonstrated the effectiveness of teleoperating different legged robots interactively and generating rich multicontact movements. We evaluated the computational efficiency of the proposed algorithms, and further validated and analyzed multicontact loco-manipulation tasks on humanoid and quadruped robots by reaching, active pushing, and various traversal on uneven terrains

    Haptic Bimanual System for Teleoperation of Time-Delayed Tasks

    Get PDF
    This paper presents a novel teleoperation system, which has been designed to address challenges in the remote control of spaceborne bimanual robotic tasks. The primary interest for designing this system is to assess and increase the efficacy of users performing bimanual tasks, while ensuring the safety of the system and minimising the user's mental load. This system consists of two seven-axis robots that are remotely controlled through two haptic control interfaces. The mental load of the user is monitored using a head-mounted interface, which collects eye gaze data and provides components for the holographic user interface. The development of this system enables the safe execution of tasks remotely, which is a critical building block for developing and deploying future space missions as well as other high-risk tasks

    Learning to Assist Bimanual Teleoperation using Interval Type-2 Polynomial Fuzzy Inference

    Get PDF
    Assisting humans in collaborative tasks is a promising application for robots, however effective assistance remains challenging. In this paper, we propose a method for providing intuitive robotic assistance based on learning from human natural limb coordination. To encode coupling between multiple-limb motions, we use a novel interval type-2 (IT2) polynomial fuzzy inference for modeling trajectory adaptation. The associated polynomial coefficients are estimated using a modified recursive least-square with a dynamic forgetting factor. We propose to employ a Gaussian process to produce robust human motion predictions, and thus address the uncertainty and measurement noise of the system caused by interactive environments. Experimental results on two types of interaction tasks demonstrate the effectiveness of this approach, which achieves high accuracy in predicting assistive limb motion and enables humans to perform bimanual tasks using only one limb

    Application of geographic information systems and simulation modelling to dental public health: Where next?

    Get PDF
    Public health research in dentistry has used geographic information systems since the 1960s. Since then, the methods used in the field have matured, moving beyond simple spatial associations to the use of complex spatial statistics and, on occasions, simulation modelling. Many analyses are often descriptive in nature; however, and the use of more advanced spatial simulation methods within dental public health remains rare, despite the potential they offer the field. This review introduces a new approach to geographical analysis of oral health outcomes in neighbourhoods and small area geographies through two novel simulation methods-spatial microsimulation and agent-based modelling. Spatial microsimulation is a population synthesis technique, used to combine survey data with Census population totals to create representative individual-level population datasets, allowing for the use of individual-level data previously unavailable at small spatial scales. Agent-based models are computer simulations capable of capturing interactions and feedback mechanisms, both of which are key to understanding health outcomes. Due to these dynamic and interactive processes, the method has an advantage over traditional statistical techniques such as regression analysis, which often isolate elements from each other when testing for statistical significance. This article discusses the current state of spatial analysis within the dental public health field, before reviewing each of the methods, their applications, as well as their advantages and limitations. Directions and topics for future research are also discussed, before addressing the potential to combine the two methods in order to further utilize their advantages. Overall, this review highlights the promise these methods offer, not just for making methodological advances, but also for adding to our ability to test and better understand theoretical concepts and pathways

    Fitness cost associated with loss of the AvrLm4 avirulence function in Leptosphaeria maculans (Phoma stem canker of oilseed rape)

    No full text
    Near-isogenic isolates of Leptosphaeria maculans differing at the AvrLm4 avirulence locus (AvrLm4 or avrLm4) were produced in vitro. Methods for inoculation of leaves of oilseed rape with ascospores or conidia were compared. The 'ascospore shower' inoculation was the most efficient method for use when inoculum is limited (e.g. ascospores produced in vitro). It was used in controlled environments to compare fitness of AvrLm4 and avrLm4 isolates at 5, 10, 15, 20 or 25 degrees C on leaves of oilseed rape cultivars Eurol and Darmor lacking the resistance gene Rlm4, which corresponds to AvrLm4. At all temperatures tested, AvrLm4 ascospores produced more lesions than avrLm4 ascospores. The diameters of lesions produced by AvrLm4 ascospores were greater than those of lesions produced by avrLm4 ascospores. At 15-20 degrees C, more lesions initiated by AvrLm4 ascospores produced pycnidia than did lesions initiated by avrLm4 ascospores. However, there were no differences between AvrLm4 and avrLm4 isolates in incubation period (from inoculation to appearance of lesions) or rate of mycelial growth in leaves from lesions towards the stems. In field experiments with winter oilseed rape cultivars lacking Rlm4, the frequency of AvrLm4 isolates increased from 5.7% at the phoma leaf lesion stage (autumn) to 20.5% at the stem canker stage (summer) during 2002/2003 and from 7.9 to 11.5% during 2003/2004 growing seasons. Results of controlled environment and field experiments indicate that avrLm4 isolates have a fitness cost compared to AvrLm4 isolates.Peer reviewe

    Fractal in fracture of bulk metallic glass

    No full text
    International audienceWe investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical tough bulk metallic glass, submitted to high-velocity plate impact and scanned by atomic force microscopy (AFM). The detrended fluctuation analysis (DFA) of the recorded AFM profiles reveals that the valley landscapes of the NPC are nearly memoryless, characterized by Hurst parameter of 0.52 and exhibiting a self-similar fractal character with the dimension of about 1.48. Our findings confirm the existence of the ''quasi-cleavage'' fracture underpinned by tension transformation zones (TTZs) in metallic glasses. (C) 2010 Elsevier Ltd. All rights reserved
    corecore