7,234 research outputs found

    Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents.

    Get PDF
    Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as "charge immobilization" (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567-590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at -90 mV return potential changed from a single fast component to at least two components, the slower requiring approximately 200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at -120 and -90 mV. In contrast, at higher potentials (-70 and -50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of "parallel" inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region

    Equilibrium onions?

    Get PDF
    We demonstrate the possibility of a stable equilibrium multi-lamellar ("onion") phase in pure lamellar systems (no excess solvent) due to a sufficiently negative Gaussian curvature modulus. The onion phase is stabilized by non-linear elastic moduli coupled to a polydisperse size distribution (Apollonian packing) to allow space-filling without appreciable elastic distortion. This model is compared to experiments on copolymer-decorated lamellar surfactant systems, with reasonable qualitative agreement

    Walls Inhibit Chaotic Mixing

    Get PDF
    We report on experiments of chaotic mixing in a closed vessel, in which a highly viscous fluid is stirred by a moving rod. We analyze quantitatively how the concentration field of a low-diffusivity dye relaxes towards homogeneity, and we observe a slow algebraic decay of the inhomogeneity, at odds with the exponential decay predicted by most previous studies. Visual observations reveal the dominant role of the vessel wall, which strongly influences the concentration field in the entire domain and causes the anomalous scaling. A simplified 1D model supports our experimental results. Quantitative analysis of the concentration pattern leads to scalings for the distributions and the variance of the concentration field consistent with experimental and numerical results.Comment: 4 pages, 3 figure

    Discrepancy between sub-critical and fast rupture roughness: a cumulant analysis

    Full text link
    We study the roughness of a crack interface in a sheet of paper. We distinguish between slow (sub-critical) and fast crack growth regimes. We show that the fracture roughness is different in the two regimes using a new method based on a multifractal formalism recently developed in the turbulence literature. Deviations from monofractality also appear to be different in both regimes

    Roughness of fracture surfaces

    Full text link
    We study the fracture surface of three dimensional samples through a model for quasi-static fractures known as Born Model. We find for the roughness exponent a value of 0.5 expected for ``small length scales'' in microfracturing experiments. Our simulations confirm that at small length scales the fracture can be considered as quasi-static. The isotropy of the roughness exponent on the crack surface is also shown. Finally, considering the crack front, we compute the roughness exponents for longitudinal and transverse fluctuations of the crack line (both 0.5). They result in agreement with experimental data, and supports the possible application of the model of line depinning in the case of long-range interactions.Comment: 10 pages, 5 figures, Late

    Slow decay of concentration variance due to no-slip walls in chaotic mixing

    Full text link
    Chaotic mixing in a closed vessel is studied experimentally and numerically in different 2-D flow configurations. For a purely hyperbolic phase space, it is well-known that concentration fluctuations converge to an eigenmode of the advection-diffusion operator and decay exponentially with time. We illustrate how the unstable manifold of hyperbolic periodic points dominates the resulting persistent pattern. We show for different physical viscous flows that, in the case of a fully chaotic Poincare section, parabolic periodic points at the walls lead to slower (algebraic) decay. A persistent pattern, the backbone of which is the unstable manifold of parabolic points, can be observed. However, slow stretching at the wall forbids the rapid propagation of stretched filaments throughout the whole domain, and hence delays the formation of an eigenmode until it is no longer experimentally observable. Inspired by the baker's map, we introduce a 1-D model with a parabolic point that gives a good account of the slow decay observed in experiments. We derive a universal decay law for such systems parametrized by the rate at which a particle approaches the no-slip wall.Comment: 17 pages, 12 figure

    Cleavage of C3 by Neutral Proteases from Granulocytes in Pleural Empyema

    Get PDF
    The possibility of direct inactivation of C3 by granular enzymes from polymorphonuclear leukocytes(PMNLs) in pleural empyema was examined. As a group, pleural empyema from 10 patients with purulent effusions and a positive bacteriologic culture cleaved significantly more 125I-labeled C3 bound to Sepharose (18.4% ± 7.3%) than did 19sterile pleural effusions (2.4% ± 0.9%; P << 0.001)and sonicates from bacterial strains commonly found in empyema (1.4% ± 0.2%). Granular enzymesfrom 7 × 106 PMNLs cleaved 78.5% of 125I-labeled C3 bound to Sepharose. When proteolysis of 125I-labeled C3 after incubation with pleural empyema or PMNL granular enzymes was examined with polyacrylamide gel electrophoresis, breakdown products were similar. Granulocyte elastase-like activity was detected in four samples of pleural empyema. Granulocyte elastase inhibitors, as well as 10% human serum, effectively suppressed cleavage of C3 and elastase-like activity. In pleural empyemas, granular enzymes from PMNLs, especially elastase, apparently contribute to low complement-mediated opsonic activity by direct inactivation of C
    • …
    corecore