6 research outputs found

    Analysis of How People with Intellectual Disabilities Organize Information Using Computerized Guidance

    Get PDF
    International audienceAccess to residential settings for people with intellectual disabilities (ID) contributes to their social participation, but presents particular challenges. Assistive technologies can help people perform activities of daily living. However, the majority of the computerized solutions offered use guidance modes with a fixed, unchanging sequencing that leaves little room for self-determination to emerge. The objective of the project was to develop a flexible guidance mode and to test it with participants, to describe their information organization methods. This research used a descriptive exploratory design and conducted a comparison between five participants with ID and five participants with no ID. The results showed a difference in the information organization methods for both categories of participants. The people with ID used more diversified organization methods (categorical, schematic, action-directed) than the neurotypical participants (visual, action-directed). These organization methods varied depending on the people, but also on the characteristics of the requested task. Furthermore, several people with ID presented difficulties when switching from virtual to real mode. These results demonstrate the importance of developing flexible guidance modes adapted to the users’ cognitive strategies, to maximize their benefits. Studies using experimental designs will have to be conducted to determine the impacts of more-flexible guidance modes

    A mass budget and box model of global plastics cycling, degradation and dispersal in the land-ocean-atmosphere system

    No full text
    International audienceSince 1950 humans have introduced 8300 teragrams (Tg, 10 12 g, millions of metric tons) of plastic polymers into the Earth’s surface environment. Accounting for the dispersal and fate of produced plastics and fragmented microplastics in the environment has been challenging. Recent studies have fueled debate on the global river budget for plastic transport to oceans, the sinking and beaching of marine plastics and the emission and deposition of atmospheric microplastics. Here we define a global plastics cycle and budget, and develop a box model of plastics cycling, including the fragmentation and transport of large and small microplastics (LMP, SMP) within coupled terrestrial, oceanic and atmospheric reservoirs. We force the model with historical plastics production and waste data, and explore how macroplastics, LMP and SMP propagate through the reservoirs from 1950 to 2015 and beyond. We find that considerable amounts of plastics reside most likely in the deep ocean (82 Tg), in shelf sediments (116 Tg), on beaches (1.8 Tg) and, as a result of marine emissions, in the remote terrestrial surface pool (28 Tg). Business as usual or maximum feasible reduction and discard scenarios show similar, 4-fold increases in atmospheric and aquatic ecosystem SMP exposure by 2050, because future plastics mobilization is controlled by releases from the large terrestrial discarded plastics reservoir (3500 Tg). Zero-release from 2025 onwards illustrates recovery of P and LMP reservoirs on centennial time scales, while SMP continue to cycle in air, soil, and surface ocean for millennia. Limiting dramatic future dispersal of plastics requires, in addition to reducing use and waste, remediation of the large terrestrial legacy plastics pool

    A mass budget and box model of global plastics cycling, degradation and dispersal in the land-ocean-atmosphere system

    No full text
    International audienceSince 1950 humans have introduced 8300 teragrams (Tg, 10 12 g, millions of metric tons) of plastic polymers into the Earth’s surface environment. Accounting for the dispersal and fate of produced plastics and fragmented microplastics in the environment has been challenging. Recent studies have fueled debate on the global river budget for plastic transport to oceans, the sinking and beaching of marine plastics and the emission and deposition of atmospheric microplastics. Here we define a global plastics cycle and budget, and develop a box model of plastics cycling, including the fragmentation and transport of large and small microplastics (LMP, SMP) within coupled terrestrial, oceanic and atmospheric reservoirs. We force the model with historical plastics production and waste data, and explore how macroplastics, LMP and SMP propagate through the reservoirs from 1950 to 2015 and beyond. We find that considerable amounts of plastics reside most likely in the deep ocean (82 Tg), in shelf sediments (116 Tg), on beaches (1.8 Tg) and, as a result of marine emissions, in the remote terrestrial surface pool (28 Tg). Business as usual or maximum feasible reduction and discard scenarios show similar, 4-fold increases in atmospheric and aquatic ecosystem SMP exposure by 2050, because future plastics mobilization is controlled by releases from the large terrestrial discarded plastics reservoir (3500 Tg). Zero-release from 2025 onwards illustrates recovery of P and LMP reservoirs on centennial time scales, while SMP continue to cycle in air, soil, and surface ocean for millennia. Limiting dramatic future dispersal of plastics requires, in addition to reducing use and waste, remediation of the large terrestrial legacy plastics pool

    Modeling present and future plastics dispersal in the global environment and recommendations for cleanup scenarios

    No full text
    Since 1950 humans have introduced 8300 teragrams (Tg, 1012 grams, millions of metric tons) of plastic polymers into the Earth’s surface environment. Accounting for the dispersal and fate of produced plastics and fragmented microplastics in the environment has been challenging. Recent studies have fueled debate of the global river budget for plastic transport to oceans, the sinking and beaching of marine plastics and the emission and deposition of atmospheric microplastics. Here we define a global plastics cycle and budget, and develop a box model of plastic cycling, including the fragmentation and transport of large and small microplastics (LMP, SMP) within coupled terrestrial, oceanic and atmospheric reservoirs. We force the model with historical plastics production and waste data, and explore how macroplastics, LMP and SMP propagate through the reservoirs from 1950 to 2015 and beyond. We find that considerable amounts of plastics reside most likely in the deep ocean (82 Tg), in shelf sediments (116 Tg), on beaches (1.8 Tg) and, as a result of marine emissions, in the remote terrestrial surface pool (28 Tg). Business as usual or maximum feasible reduction and discard scenarios show similar, 4-fold increases in atmospheric and aquatic ecosystem SMP exposure by 2050, because future plastics mobilization is controlled by releases from the large terrestrial discarded plastics reservoir (3500 Tg). Zero-release from 2025 onwards illustrates recovery of P and LMP reservoirs on centennial time scales, while SMP continue to cycle in air, soil, and surface ocean for millennia. Limiting dramatic future dispersal of plastics requires, in addition to reducing use and waste, remediation of the large terrestrial legacy plastics pool

    Make EU trade with Brazil sustainable

    Get PDF
    Brazil, home to one of the planet's last great forests, is currently in trade negotiations with its second largest trading partner, the European Union (EU). We urge the EU to seize this critical opportunity to ensure that Brazil protects human rights and the environment
    corecore