895 research outputs found

    Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft

    Get PDF
    A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations

    Triticale—A Possible Third Crop for Iowa

    Get PDF
    Triticale (trit-ah-kay-lee) is a close relative of wheat that results from pollinating durum wheat with rye pollen, and then using that cross in a breeding program to produce stable, self-replicating varieties. Triticale yield, stress tolerance, and disease resistance are greater than that of wheat. Triticale doesn’t currently possess the grain traits of bread wheat, so its greatest marketing potential is as animal feed

    The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Get PDF
    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described

    A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Get PDF
    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects

    Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures

    Get PDF
    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during controlled drill percussions

    Astrobiology Survey of a Lava Cave at Lava Beds National Monument by a Rover Carrying a Remote Sensing Instrument Payload

    Get PDF
    We report here on a survey of a lava tube cave by a rover that is instrumented for astrobiology missions. The NASA Ames testbed rover, CaveR, was deployed in Valentine Cave in Lava Beds National Monument (N. CA, USA) during August of 2018. The rover carried an instrument package consisting of Near Infrared and Visible Spectrometer System (NIRVSS) a point spectrometer operating in 1590-3400 nm range, sensitive to H2O and -OH bearing minerals, pyroxenes, and carbonates (Roush, et al 2018); the bore sighted Drill Operations Camera (DOC), a monochrome imager illuminated by LEDs at 410, 540, 640, 740, 905 and 940 nm; a Realsense depth sensor system for 3D model generation; and a high resolution DSLR stereo camera. The payload was mounted on a tiltable instrument platform attached to the left side of the rover. The rover was driven manually in the cave by field operators, following instructions from a remote science operations team, and simulating a mission concept with science-guided autonomy. A simulated mission took place for 3 days with a team of 3 scientists selecting targets and interpreting data from the payload. To begin the mission, the rover drove along one wall of the cave imaging continuously with the Realsense in 20 m cave segments, three total. At the start of each day, the images from a 20m segment and a panorama stitched from them were provided to the science team to examine. The science team used these data to prioritize specific points along the cave wall for the collection of NIRVSS, DOC, and DSLR data. The objective of the data collection was to identify and study putative biological and mineralogical features in the cave. The data were delivered in xGDS, a customized mapping, planning, and data base management software developed at NASA Ames (Lee, et al 2013). Once the targets for further observations were selected, a plan for collecting the observations (positions in the cave and pointing for each requested observation) was constructed using xGDS and delivered to a rover team to execute the science data collection plan. Acquired data were delivered back to the science team for analysis. Preliminary results from the experiment illustrate the utility of the system (rover plus payload) to study the cave geology and mineralogy and its potential for identifying biomineral features

    Validation of statistical clustering on TES dataset using synthetic Martian spectra

    Get PDF
    In this work we present some results concerning the analysis of Thermal Emission Spectrometer (TES) data, looking at the methane Q-branch spectral signature at 1304 cm-1. Such analysis has been enabled by producing some synthetic spectral datasets, simulating the atmospheric and surface variability observed on Mars, excluding the high latitude regions. The use of synthetic spectra is aimed to provide a better comprehension of the influence that the atmospheric state vector and its composition have on the spectral behavior. This effort is important, because the TES data are characterized by a low resolution (10 cm-1) and a significant random and systematic noise which could, in principle, give results whose quality needs to be improved. We apply statistical clustering of the synthetic spectra to evaluate the effectiveness of detecting methane, and estimating its abundance

    Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant

    Get PDF
    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment
    • …
    corecore