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Abstract. In this work we present some results concerning the analysis of Thermal
Emission Spectrometer (TES) data, looking at the methane Q-branch spectral signature at
1304 cm−1. Such analysis has been enabled by producing some synthetic spectral datasets,
simulating the atmospheric and surface variability observed on Mars, excluding the high
latitude regions. The use of synthetic spectra is aimed to provide a better comprehension
of the influence that the atmospheric state vector and its composition have on the spectral
behavior. This effort is important, because the TES data are characterized by a low resolu-
tion (10 cm−1) and a significant random and systematic noise which could, in principle, give
results whose quality needs to be improved. We apply statistical clustering of the synthetic
spectra to evaluate the effectiveness of detecting methane, and estimating its abundance.
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1. Introduction

The discovery of Martian atmospheric
methane started a very lively discussion in the
community, due to the fact that methane, on
Earth, is strongly linked to the presence of
life forms, even if a purely geological origin
is also possible. However such a discovery
implies the current production of the gas,
that suggests a geologically active planet. In
spite of subsequent identification of methane
(Mumma et al. 2009; Fonti & Marzo 2010),

the results of such observations have been
questioned (Zahnle et al. 2011).

In spite of TES’ low spectral resolution, we
can take advantage of the large number of spec-
tra per Martian Year available (up to 6 mil-
lions). This allows us to use statistical tech-
niques, like clustering, to analyze the datasets.
The use of synthetic datasets, if generated with
a set of well-calibrated parameters, provide an
essential mechanism for interpreting the clus-
tering results on real TES datasets.
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We begin by describing the general charac-
teristics of the TES spectra; we then describe
in detail the parameters used to produce the
synthetic spectra. We show the results of the
clustering procedure on the synthetic datasets,
looking at the methane detection issue. Finally,
the future developments are briefly outlined.

2. TES spectra modeling

2.1. TES spectra: brief overview

The Thermal Emission Spectrometer (TES)
is a Michelson interferometer on board of
the Mars Global Surveyor (MGS) mission. Its
spectral coverage goes from ∼ 6 to ∼ 50 µm
(201.6 to 1654.3 cm−1) (Christensen et al.
2001). The nominal spectral resolution is 10
cm−1 for the large majority of spectra, and 5
cm−1 for a smaller portion of data. However,
the real resolutions are 12.5 cm−1, and 6.25
cm−1, because of the self-apodization due to
the misalignment of each of the six detectors
with respect to the optical axis of the instru-
ment (Christensen et al. 2001).

Fig. 1 is an example of TES emissivity
spectrum at 10 cm−1. Because of the low reso-
lution, the only spectral feature which is clearly
visible in every spectrum is the atmospheric
CO2 absorption band centered at 668 cm−1;
other spectral signatures are visible, with dif-
ferent intensities, in any spectrum, such as the
water vapor rotational band features and the
large suspended dust band centered at ∼ 1080
cm−1, while the spectral continuum is modeled
by the surface emissivity, particularly in the re-
gions between 200 and 500 cm−1, and between
1200 and 1600 cm−1. The methane absorption
spectral feature is located in an atmospheric
window region. This implies that its detection
could be disturbed by the surface spectral fea-
tures, that we have to model as accurately as
possible.

2.2. Martian atmosphere model

The synthetic spectral datasets have been pro-
duced by using the MODTRAN radiative
transfer code, ver. 3.1, which is a line-by-line
model, based on the HITRAN 96 database ver-

sion (Rothman et al. 1998). In fact, the adop-
tion of a moderate resolution code is quite
suitable for reproducing low resolution spec-
tra, like those provided by TES. The simulated
spectra are produced at a resolution of 1 cm−1,
and then convolved to the TES resolution and
sampling. The generation of a dataset of syn-

Table 1. Pressure grid used in the Martian at-
mosphere model.

Layer # Av. pressure (mb) Av. altitude (m)
1 13.5000000 0.00
2 12.9137000 2981.80
3 10.0572000 6033.60
4 7.8325550 9024.76
5 6.1000000 11956.5
6 4.7506850 14829.9
7 3.6998370 17646.2
8 2.8814360 20406.6
9 2.2440650 23112.1
10 1.7476790 25763.8
11 1.3610940 28362.8
12 1.0600210 30910.2
13 0.8255452 33406.9
14 0.6429352 35854.0
15 0.5007185 38252.5
16 0.3899599 40603.3
17 0.3037011 42907.4
18 0.2365227 45165.7
19 0.1842040 47379.1
20 0.1434582 49548.5
21 0.1117254 51674.8
22 0.0870000 53837.6
23 0.0678000 55822.8
24 0.0528000 57937.1
25 0.0411000 59883.2
26 0.0320000 61918.0
27 0.0249000 63632.8
28 0.0194000 65498.6
29 0.0151000 67487.0
30 0.0118000 69209.2

thetic spectra is based on a look-up table of
vertical temperature-pressure profiles. Not the
entire TES dataset has been used to analyze
the methane concentration in the Martian at-
mosphere (Fonti & Marzo 2010): in the same
way, we have taken into consideration only
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Fig. 1. An example of TES emissivity spectrum. The main spectral features are indicated. In the bottom
right inset, a zoom on the region where the CH4 ν4 Q-branch is.

the atmospheric state vectors1 corresponding
to particular conditions and locations: from -50
to +50 degrees in latitude, taken in the central
part of the day (local time from 11 to 15), and
characterized by a nadir-viewing geometry. In
addition, for this work, we have selected only
profiles corresponding to low-dust concentra-
tion in the Martian atmosphere. This choice is
justified by the experimented difficulty to re-
trieve the methane total columnar amount from
dusty TES spectra. This, as the other choices
generating synthetic datasets, are aimed to rep-
resent the entire range of atmospheric and sur-
face variability observed on Mars.

Table 1 shows the pressure grid used as in-
put to produce the synthetic spectra. For con-
venience, it is the same as is used in the TES
temperature profile retrieval algorithm, with

1 ”Atmospheric state vector” is intended as the
temperature-pressure vertical profile.

the layer boundaries chosen such that the gas
within the layer can be considered homoge-
neous. The grid is extended up to 0.01 mb,
which corresponds to ∼70 km of altitude, with
the zero-level fixed at 13.5 mb 2. Trials made
producing synthetic spectra corresponding to
average Martian atmospheric conditions, com-
pared to real TES spectra, have shown that the
errors introduced by limiting the number of
layers to 30, and by extending the layering up
to 0.01 mb, are negligible along all the TES
spectral coverage, at the TES low resolution.

The temperature profiles in the look-up ta-
ble have been retrieved by the TES team using
the Conrath algorithm (Conrath et al. 1998),
based on the inversion of the atmospheric radi-

2 Assuming an atmospheric vertical scale of 11.6
km
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on the spectral channels corresponding to the
strong CO2 absorption band at 668 cm−1. The
temperature profiles have been considered as
representative of the whole atmospheric vari-
ability, and used without modifications.

At this first stage, the atmospheric compo-
sition has been assumed to be constant with al-
titude: in other words, the various gases con-
centrations are the same for each atmospheric
layer. This hypothesis makes sense with the
CO2; but is not realistic for the water vapor, or
methane. However for the methane the mech-
anisms for its origin and subsequent destruc-
tion in the atmosphere are not known. So there
is little information to constrain its abundance
with altitude. As a result we leave it well-
mixed in all layers.

A different approach is adopted to model
the aerosol dust and the water ice vertical pro-
files. For dust, Heavens et al. (2011) describe
the vertical profile of dust as a combination of
a Conrath profile (Conrath et al. 2000), which
decreases with altitude, and a Gaussian, at a
typical altitude of 25-35 km. This combined
profile is more general than the simple Conrath
profile, so we have decided to use it, yielding:

q = qConrath + qGauss = q0 · exp
[
n(1 − α−1)

]
+

+
1√
2πσ

exp
[
− (z − zl)2

2σ2

]
(2)

where q0 is the dust mass mixing ratio at z=0,
σ the standard deviation (in altitude) of the
dust enriched layer, zl is the centroid (in alti-
tude) of the gaussian distribution, n is a dif-
fusion parameter, which controls how steeply
the dust concentration decreases as z increases,
and:

α =
p − ptop

ps − ptop
, or α = exp(−z/H) (3)

where ptop is the atmospheric pressure at the
top of the grid (Table 1), ps the atmospheric
pressure at ground, and H is the vertical scale
of the atmosphere. Typical values for the pa-
rameters above are σ = 7km, zl ≈ 30km,

while n = 0.01 during the dust storms, and 10-
40 times higher during the rest of the Martian
Year. Furthermore, the enriched layer is really
significant only in the dust storms periods; for
this reasons, in the model the Conrath pro-
file component is dominant, while the gaus-
sian enriched layer amplitude has been set 10-
15 times lower than the Conrath one, setting
n = 0.25, and varying q0 from 10−6 to 2.5·10−5.
Some examples of dust vertical profiles (with
altitude) are given in Fig. 2.

Several observations (by rovers and space-
crafts) have confirmed that ice clouds com-
monly occur in the middle atmosphere, even
in the equatorial regions, where the ice con-
denses on dust grains. Moreover, many spectra
exhibits an absorption feature centered at ∼800
cm−1, which can be directly attributed to wa-
ter ice particles; as a consequence, this atmo-
spheric component cannot be neglected. Water
ice absorption is here modeled multiplying the
atmospheric emissivity spectrum, obtained by
including gases and dust as previously de-
scribed, by the water ice particles emissiv-
ity, scaled with the ice optical depth. Even if
this component should not influence the spec-
trum in the methane band region (around 1300
cm−1), we include it for completeness.

2.3. Martian surface emissivity model

The last spectral component to be modeled is
the surface emissivity. To make simulations
faster, and to avoid the introduction of redun-
dant hypotheses about the surface composition
and emissivity, we have multiplied each simu-
lated atmospheric spectrum by a linear combi-
nation of the three average emissivity spectra,
representative of the typical Martian surface
types: andesitic, basaltic, and dusty, having a
different visual albedo (Bandfield & Smith
2003). The three average emissivity spectra are
plotted in Fig. 3, in the TES spectral range.

3. Synthetic spectra clustering

3.1. Introduction

Our motivations in creating a synthetic spec-
tral dataset are to: 1) evaluate if the statistical
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Fig. 2. Typical behavior of the dust mass mixing ratio with altitude. Left panel: the Conrath component and
the gaussian component, separated; right panel: sum of the two components, for different values of n.

Fig. 3. The three average surfaces spectra used in
the model: andesitic, basaltic, and dusty (Bandfield
& Smith 2003).

clustering technique used in Fonti and Marzo
(2010) can identify methane from a controlled
sample; and 2) quantify the minimum methane
mixing ratio detectable from a large number of
spectra. The minimum number of TES spectra
used in the analysis of methane detection and
abundance on Mars (Fonti and Marzo 2010) is
of the order of 104. Because of the computa-
tionally intense nature of creating the synthetic
spectra, approximately 4 hours for 104 spec-
tra, we created a synthetic data set with a num-
ber of spectra close to this minimum, approxi-
mately 104.

3.2. Synthetic spectra generation

The model described in section 2 has been used
to produce sets of synthetic spectra. To gener-
ate a single spectrum, the temperature vertical
profile and the surface pressure have been ran-
domly extracted from the look-up table, while
the H2O vertical profile and the CH4 mixing
ratio have been made varying according to the
knowledge that we have about the martian at-
mosphere composition (see Table 2). Finally,
the dust vertical profile and total extinction
has been modeled according to the trend in-
troduced in section 2.2. In addition, not all the

Table 2. Variability of the main parameters
used to produce synthetic spectra datasets (*:
Atmospheric dust extinction efficiency at 670
nm, measured in km−1).

Parameter Min. val. Max. val.
Surface skin temp. 230 K 300 K
Surface pressure 0.5 mb 11 mb
H2O Mixing ratio 0 ppmv 800 ppmv
CH4 Mixing ratio 0 ppbv 80 ppbv
Dust extinction effic.∗ 0 0.05
Ice tot. optical depth 0 0.2

spectra are characterized by a methane mix-
ing ratio different from 0. In particular, we
have chosen to create datasets with approxi-
mately 60% of spectra without methane, while
the residual 40% of spectra is characterized by
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a methane columnar amount within the limits
in Table 2. Both the CH4 and H2O columnar
amounts have been extracted randomly from a
triangular distribution peaked on the average of
the max. and min. limits in Table 2.

At this first stage, no random noise has
been introduced in the spectra, because in the
CH4 band region that we are looking at, the
random noise is much less significant than
the variations of emissivity introduced by the
surface variability and atmospheric suspended
dust.

3.3. Clustering results

The cluster analysis should group the spectra
according to their methane content; In an ideal
case, the statistical analysis of the input spec-
tra would produce two clusters of spectra; one
containing methane (labeled as ”methane clus-
ter”) and one without methane (”no-methane
cluster”). In order to make the clustering pro-
cess efficient, and to focus the statistical analy-
sis on methane, we have defined a suitable pa-
rameter to give in input to the clustering algo-
rithm, the CH4 band depth, calculated as fol-
lows:

BD =
εCONTS X + εCONTDX

2 · εCENT ER
(4)

where εCONTS X ed εCONTDX are the emissiv-
ity values in the two channels alongside the
methane spectral channel (∼1294 and ∼1315
cm−1), while εCENT ER is the emissivity in the
methane spectral channel (∼1304 cm−1). In
fact, this quantity could give information about
the energy absorbed by the methane in the at-
mosphere, and so it is suitable to be used as
input for the clustering algorithm.

Fig. 4 shows the scatter plot of the clus-
tering results; this chart is built putting on the
x-axis the emissivity value at 1294 cm−1 (the
channel on the left of the methane channel),
and on the y-axis the emissivity value at 1304
cm−1 (methane channel).

A better visualization of the result is pro-
vided by having a look to the centroids of the
two clusters, in Fig. 5. It can be seen that no
obvious methane bands are visible, neither in
the ”no-methane” cluster, nor in the ”methane”

Fig. 4. Top panel: synthetic dataset analyzed; the
red points represents the spectra with no methane,
while the blue points represents the spectra with
a methane mixing ratio different from 0. Bottom
panel: result of the clustering. The red points rep-
resents the spectra inserted in the ”no-methane”
group, while the blue points represents the spectra
put in the ”methane” group.

one. However, using the approach of Fonti and
Marzo (2010) by dividing one cluster by the
other, then a feature appears near the methane
band as shown in the bottom of Fig. 5. This
permits us to label the clusters methane and no
methane.

However, it is apparent from Fig. 4 that
there is significant overlap in emissivity val-
ues between these two clusters. This is quan-
tified in Table 3 where the number of spec-
tra in each group is defined pre- and post-
clustering. Spectra with and without methane
are associated with the inaccurate cluster. To
quantify this, known the methane abundance of
every spectrum, it is easy to calculate the aver-
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Table 3. Clustering results.

Real data Clustering results
# sp. per cluster 5892 no-methane, 3928 methane 4648 no-methane, 5172 methane

ppbv CH4 per cluster No-methane: 0 ppbv
Methane:(39.5 ± 26.4) ppbv

No-methane: (8.76 ± 18.11) ppbv
Methane: (22.14 ± 27.14) ppbv

age methane abundance in each of the groups
pre- and post-clustering. The results are in the
last row of Table 3. Pre-clustering the group
without methane yields an appropriate zero
methane abundance value, while after cluster-
ing the methane abundance has increased. For
the groups containing methane, the estimated
abundance is decreased by clustering, likely
due to the inclusion of spectra not containing
methane in this group.

3.4. Spectra simulation issues

Despite of the criticity introduced by the sur-
face emissivity variability, and particularly by
the surface dust, the clustering succeeds par-
tially to distinguish the spectra according to
their methane mixing ratio. However, it must
be pointed out that the simulation must be im-
proved, especially in the surface component.

Looking at Fig. 6, it is apparent the dis-
tributions are different. While there may be a
number of possible explanations for this differ-
ence, we suggest two explanations here (Mind
that the real TES dataset taken in example is
made by almost 200000 spectra).

Firstly, our treatment of the variability of
the surface emissivity may not be sufficient,
especially for the surface dust component. We
calculated the average of all the synthetic spec-
tra and divided this by the average of all the
TES spectra represented in Fig. 7 and the result
is compared to the average Martian dusty sur-
face spectrum (Bandfield & Smith 2003). The
overall slope is similar, even though some of
the maxima and minima are shifted. This sug-
gests to us that the influence of the surface dust
needs to be more accurately accounted for.

Secondly, no random, or correlated, noise
was included in calculations of the synthetic

spectra while these are inherently present in the
TES data.

Fig. 5. Top panel: centroids of the two clusters in
the spectral region around the methane band; the
centroid of the ”no-methane” cluster is in red, the
centroid of the ”methane” cluster is in blue; the error
bars are not referred to the instrumental noise, but
they represent simply the standard deviation of the
spectral emissivity of each cluster. Bottom panel: ra-
tio between the two centroids; the methane band is
visible.



Liuzzi G.: Validation of statistical clustering on TES dataset 119

Fig. 6. Top panel: synthetic dataset scatter plot (like
in Fig. 4. Bottom panel: example of real TES dataset
scatter plot. It is clearly visible that they have a dif-
ferent symmetry.

4. Conclusions and future
developments

The results we have shown in this paper de-
scribe how it is possible to rely on the cluster-
ing technique in analyze TES data for methane
retrieving and estimating, even if the spectral
resolution is quite poor. In a certain way, this
work has been done from a new perspective,
which consists in testing the data analysis pro-
cedure on synthetic data, whose characteristics
are well-known. Regarding the methane detec-
tion, we have shown that a straightforward ap-
proach consists in using the band depth as clus-
tering parameter, and that it works well enough
for our purposes. Of course, the simulation of
the surface emissivity must be improved, as
well as the atmospheric profiling.

Fig. 7. Top panel: ratio between the average spectra
of the two datasets in Fig. 6. Bottom panel: dusty
surface average emissivity spectrum.

Another aspect that must be improved in
the future concerns the radiative transfer model
by which we produce the synthetic spectra.
So far, simulations have been done using a
line by-line moderate resolution code, with a
partially obsolete spectral lines database. We
plan to develop an instrument-dedicated radia-
tive transfer code, providing a parametric and
analytic representation of monochromatic op-
tical depths. Such a model, based on similar
models already released for the Earth atmo-
sphere (Amato et al. 2002), could help us also
because it allows to calculate analytical jaco-
bians, and to have a better control of the noise,
that we have not included so far.

This is the first step to retrieve planetary
atmospheric and surface parameters with the
fully analytical and physical scheme described
in Carissimo et al. (2005), Masiello et al.
(2009) and Masiello & Serio (2013).
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