523 research outputs found

    Sequestration of noble gases in giant planet interiors

    Full text link
    The Galileo probe showed that Jupiter's atmosphere is severely depleted in neon compared to protosolar values. We show, via ab initio simulations of the partitioning of neon between hydrogen and helium phases, that the observed depletion can be explained by the sequestration of neon into helium-rich droplets within the postulated hydrogen-helium immiscibility layer of the planet's interior. We also demonstrate that this mechanism will not affect argon, explaining the observed lack of depletion of this gas. This provides strong indirect evidence for hydrogen-helium immiscibility in Jupiter

    Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets

    Full text link
    We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 M_J. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ~2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets' evolution at ~700 Myr for a 0.15 M_J object and ~10 Gyr for a 3.0 M_J object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.Comment: 22 pages, including 14 figures. Accepted to the Astrophysical Journa

    Temporal and spatial patterns of the interannual variability of total ozone in the tropics

    Get PDF
    The recently constructed gridded Merged Ozone Data (MOD) set, combining the monthly mean column abundances collected by the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV and SBUV/2) instruments, provides a nearly continuous record from late 1978 to 2000 on a 5° × 10° latitude-longitude grid. The precision of these measurements and their calibration allow very small signals, ∌1% of total column ozone, to be clearly seen. Using MOD, we have carried out an empirical orthogonal function (EOF) study of the temporal and spatial patterns of the interannual variability of total column ozone in the tropics. The first four EOFs of our study capture over 93% of the variance of the deseasonalized data. The leading two EOFs of our study, respectively accounting for 42% and 33% of the variance, display structures attributable to the quasi-biennial oscillation(QBO), with influence from a decadal oscillation. The third EOF (15% of the variance) represents an interaction between the QBO and an annual cycle. The fourth EOF (3% of the variance) is related to the El Niño - Southern Oscillation. This EOF decomposition is robust; nearly identical patterns occur in the decomposition of various equatorial latitude bands of MOD and similar patterns occur in the analysis of the deseasonalized TOMS data set, a shorter record with a more finely resolved spatial grid. For comparison, similar decompositions were performed for dynamical fields from the reanalysis product from the National Centers for Environmental Prediction and the National Center for Atmospheric Research. Using these analyses, we found possible connections between the deduced patterns in ozone and the climate variables

    The Interiors of Giant Planets: Models and Outstanding Questions

    Full text link
    We know that giant planets played a crucial role in the making of our Solar System. The discovery of giant planets orbiting other stars is a formidable opportunity to learn more about these objects, what is their composition, how various processes influence their structure and evolution, and most importantly how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail, mostly from close spacecraft flybys. We can infer that they are all enriched in heavy elements compared to the Sun, with the relative global enrichments increasing with distance to the Sun. We can also infer that they possess dense cores of varied masses. The intercomparison of presently caracterised extrasolar giant planets show that they are also mainly made of hydrogen and helium, but that they either have significantly different amounts of heavy elements, or have had different orbital evolutions, or both. Hence, many questions remain and are to be answered for significant progresses on the origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth and Planetary Sciences, vol 33, (2005

    Mutual information between geomagnetic indices and the solar wind as seen by WIND : implications for propagation time estimates

    Get PDF
    The determination of delay times of solar wind conditions at the sunward libration point to effects on Earth is investigated using mutual information. This measures the amount of information shared between two timeseries. We consider the mutual information content of solar wind observations, from WIND, and the geomagnetic indices. The success of five commonly used schemes for estimating interplanetary propagation times is examined. Propagation assuming a fixed plane normal at 45 degrees to the GSE x-axis (i.e. the Parker Spiral estimate) is found to give optimal mutual information. The mutual information depends on the point in space chosen as the target for the propagation estimate, and we find that it is maximized by choosing a point in the nightside rather than dayside magnetosphere. In addition, we employ recurrence plot analysis to visualize contributions to the mutual information, this suggests that it appears on timescales of hours rather than minutes

    PCR and microarray analysis of AmpC and ESBLs producing Pseudomonas aeruginosa isolates from intensive care units

    Get PDF
    Detection of AmpC and ESBL producing P. aeruginosa by phenotypic methods is challenging, especially in low-income countries such as Pakistan. Therefore, a molecular method was developed for rapid detection of these resistance markers. A total of 303 clinical samples were collected from intensive care units (ICUs) of the Jinnah postgraduate medical centre (JPMC) Karachi, Pakistan. The isolates were identified by traditional and matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). Isolates were phenotypically analyzed for AmpCs and ESBL by D-test and by double disc synergy, respectively. The Check MDR CT103 XL and PCR techniques were used for the detection AmpCs and ESBLs. Out of 303 isolates, 148 (48.8%) were P. aeruginosa. The resistance pattern of P. aeruginosa against piperacillin, cefatizidime and cefepime was 59.4%, 64.8% and 59.4% respectively. More than 60% isolates were resistant to aminoglycosides and ciprofloxacin. All (148) strains were found sensitive to colistin. Phenotypic ESBL prevalence was 8.8% whereas genotypic resistance was 29.1%. bla was the most prevalent ESBL. Although 25.67% of P. aeruginosa isolates were positive phenotypically for AmpC, microarray (Check-MDR) analysis did not detect chromosomally located AmpC in any of the isolates. VE

    Assessment of pollen rewards by foraging bees

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The removal of pollen by flower-visiting insects is costly to plants, not only in terms of production, but also via lost reproductive potential. Modern angiosperms have evolved various reward strategies to limit these costs, yet many plant species still offer pollen as a sole or major reward for pollinating insects. 2. The benefits plants gain by offering pollen as a reward for pollinating are defined by the behaviour of their pollinators, some of which feed on the pollen at the flower, while others collect pollen to provision offspring. 3. We explore how pollen impacts on the behaviour and foraging decisions of pollen-collecting bees, drawing comparisons with what is known for nectar rewards. This question is of particular interest since foraging bees typically do not ingest pollen during collection, meaning the sensory pathways involved in evaluating this resource are not immediately obvious. 4. Previous research focussed on whether foraging bees can determine the quality of pollen sources offered by different plant species, and attempted to infer the mechanisms underpinning such evaluations, mainly through observations of collection preferences in the field 5. More recent experimental research has started to focus on if pollen itself can mediate the detection of, and learning about, pollen sources and associated floral cues. 6. We review advancements in the understanding of how bees forage for pollen and respond to variation in pollen quality, and discuss future directions for studying how this ancestral floral food reward shapes the behaviour of pollinating insects

    A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein

    Full text link
    Rearrangements involving the MLL gene at chromosome band 11q23 are common in infant acute myeloid leukemias (AMLs). We recently encountered an infant patient with rapidly progressive AML whose leukemic cells harbored a previously undescribed MLL rearrangement involving an inversion of 11q [inv(11)(q14q23)]. We used panhandle PCR to determine that this rearrangement juxtaposed the MLL ( M ixed- L ineage L eukemia) gene to the CALM ( C lathrin A ssembly L ymphoid M yeloid leukemia) gene at 11q14–q21. The CALM protein participates in recruitment of clathrin to internal membrane surfaces, thereby regulating vesicle formation in both endocytosis and intracellular protein transport. Intriguingly, CALM has been identified in other cases of AML as a translocation partner for the AF10 gene, which has independently been found to be an MLL partner in AML. We identified the MLL - CALM fusion transcript (but not the reciprocal CALM - MLL transcript) in leukemia cell RNA by RT-PCR. The predicted 1803 amino acid MLL-CALM fusion protein includes amino-terminal MLL domains involved in transcriptional repression, and carboxy-terminal CALM-derived clathrin-binding domains. The genomic breakpoint in MLL is in the 7th intron (within the breakpoint cluster region); the corresponding CALM breakpoint is in the 7th CALM intron. In contrast, breakpoints in CALM - AF10 translocations lie in the 17th–19th CALM introns (30 kb downstream); also, in these translocations, CALM provides the 5â€Č end of the fusion transcript. Together with its previously recognized association with AF10 in AML, the identification of CALM as an MLL fusion partner suggests that interference with clathrin-mediated trafficking pathways may be an underappreciated mechanism in leukemogenesis. © 2002 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35133/1/10136_ftp.pd

    The Encoding of Temporally Irregular and Regular Visual Patterns in the Human Brain

    Get PDF
    In the work reported here, we set out to study the neural systems that detect predictable temporal patterns and departures from them. We used functional magnetic resonance imaging (fMRI) to locate activity in the brains of subjects when they viewed temporally regular and irregular patterns produced by letters, numbers, colors and luminance. Activity induced by irregular sequences was located within dorsolateral prefrontal cortex, including an area that was responsive to irregular patterns regardless of the type of visual stimuli producing them. Conversely, temporally regular arrangements resulted in activity in the right frontal lobe (medial frontal gyrus), in the left orbito-frontal cortex and in the left pallidum. The results show that there is an abstractive system in the brain for detecting temporal irregularity, regardless of the source producing it
    • 

    corecore